
Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Note to other teachers and users of these slides:We would be delighted if you found this our

material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify

them to fit your own needs. If you make use of a significant portion of these slides in your own

lecture, please include this message, or a link to our web site: http://www.mmds.org

High dim.
data

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

Graph
data

PageRank,
SimRank

Network
Analysis

Spam
Detection

Infinite
data

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning
Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

AppsApps

Recommen
der systems

Association
Rules

Duplicate
document
detection

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 2

3J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

4J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 20,000 images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 2 million images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6

[Hays and Efros, SIGGRAPH 2007]

� Many problems can be expressed as
finding “similar” sets:

� Find near-neighbors in high-dimensional space

� Examples:

� Pages with similar words

� For duplicate detection, classification by topic

� Customers who purchased similar products

� Products with similar customer sets

� Images with similar features

� Users who visited similar websites

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

� Given: High dimensional data points ��, ��, …

� For example: Image is a long vector of pixel colors
1 2 1

0 2 1

0 1 0

→
1	2	1	0	2	1	0	1	0�

� And some distance function ���, ���

� Which quantifies the “distance” between �� and ��

� Goal: Find all pairs of data points ���, ��� that are

within some distance threshold ��, �� � �

� Note: Naïve solution would take � �� ����

where � is the number of data points

� MAGIC: This can be done in � � !! How?
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 8

� Last time: Finding frequent pairs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9

It
e
m
s
 1

N

Items 1 N

Count of pair {i,j}

in the data

Naïve solution:

Single pass but requires

space quadratic in the

number of items

It
e
m
s
 1

K

Items 1 K

Count of pair {i,j}

in the data

A-Priori:

First pass: Find frequent singletons

For a pair to be a frequent pair

candidate, its singletons have to be

frequent!

Second pass:

Count only candidate pairs!
N number of distinct items

K number of items with support ≥ s

� Last time: Finding frequent pairs

� Further improvement: PCY

� Pass 1:

� Count exact frequency of each item:

� Take pairs of items {i,j}, hash them into B buckets and

count of the number of pairs that hashed to each bucket:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

Items 1 N

Basket 1: {1,2,3}

Pairs: {1,2} {1,3} {2,3}

Buckets 1 B

2 1

� Last time: Finding frequent pairs

� Further improvement: PCY

� Pass 1:

� Count exact frequency of each item:

� Take pairs of items {i,j}, hash them into B buckets and

count of the number of pairs that hashed to each bucket:

� Pass 2:

� For a pair {i,j} to be a candidate for

a frequent pair, its singletons {i}, {j}

have to be frequent and the pair

has to hash to a frequent bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 11

Items 1 N

Basket 1: {1,2,3}

Pairs: {1,2} {1,3} {2,3}

Basket 2: {1,2,4}

Pairs: {1,2} {1,4} {2,4}

Buckets 1 B

3 1 2

� Last time: Finding frequent pairs

� Further improvement: PCY

� Pass 1:

� Count exact frequency of each item:

� Take pairs of items {i,j}, hash them into B buckets and

count of the number of pairs that hashed to each bucket:

� Pass 2:

� For a pair {i,j} to be a candidate for

a frequent pair, its singletons have

to be frequent and its has to hash

to a frequent bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 12

Items 1 N

Basket 1: {1,2,3}

Pairs: {1,2} {1,3} {2,3}

Basket 2: {1,2,4}

Pairs: {1,2} {1,4} {2,4}

Buckets 1 B

3 1 2

Previous lecture: A-Priori
Main idea: Candidates
Instead of keeping a count of each pair, only keep a count

of candidate pairs!

Today’s lecture: Find pairs of similar docs
Main idea: Candidates
-- Pass 1: Take documents and hash them to buckets such that

documents that are similar hash to the same bucket

-- Pass 2: Only compare documents that are candidates

(i.e., they hashed to a same bucket)

Benefits: Instead of O(N2) comparisons, we need O(N)

comparisons to find similar documents

� Goal: Find near-neighbors in high-dim. space

� We formally define “near neighbors” as
points that are a “small distance” apart

� For each application, we first need to define
what “distance” means

� Today: Jaccard distance/similarity

� The Jaccard similarity of two sets is the size of their
intersection divided by the size of their union:
sim(C1, C2) = |C1∩∩∩∩C2|/|C1∪∪∪∪C2|

� Jaccard distance: d(C1, C2) = 1 - |C1∩∩∩∩C2|/|C1∪∪∪∪C2|

14J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

� Goal: Given a large number (� in the millions or
billions) of documents, find “near duplicate” pairs

� Applications:

� Mirror websites, or approximate mirrors

� Don’t want to show both in search results

� Similar news articles at many news sites

� Cluster articles by “same story”

� Problems:

� Many small pieces of one document can appear
out of order in another

� Too many documents to compare all pairs

� Documents are so large or so many that they cannot
fit in main memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short

signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on

pairs of signatures likely to be from

similar documents

� Candidate pairs!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 16

17

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Step 1: Shingling: Convert documents to sets

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

� Step 1: Shingling: Convert documents to sets

� Simple approaches:

� Document = set of words appearing in document

� Document = set of “important” words

� Don’t work well for this application. Why?

� Need to account for ordering of words!

� A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 19

� A k-shingle (or k-gram) for a document is a

sequence of k tokens that appears in the doc

� Tokens can be characters, words or something

else, depending on the application

� Assume tokens = characters for examples

� Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

� Option: Shingles as a bag (multiset), count ab

twice: S’(D1) = {ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

� To compress long shingles, we can hash them

to (say) 4 bytes

� Represent a document by the set of hash

values of its k-shingles

� Idea: Two documents could (rarely) appear to have

shingles in common, when in fact only the hash-

values were shared

� Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

Hash the singles: h(D1) = {1, 5, 7}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21

� Document D1 is a set of its k-shingles C1=S(D1)

� Equivalently, each document is a

0/1 vector in the space of k-shingles

� Each unique shingle is a dimension

� Vectors are very sparse

� A natural similarity measure is the

Jaccard similarity:

sim(D1, D2) = |C1∩C2|/|C1∪C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22

� Documents that have lots of shingles in

common have similar text, even if the text

appears in different order

� Caveat: You must pick k large enough, or most

documents will have most shingles

� k = 5 is OK for short documents

� k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23

� Suppose we need to find near-duplicate

documents among � � � million documents

� Naïvely, we would have to compute pairwise

Jaccard similarities for every pair of docs

� ��� � ��/� ≈ 5*1011 comparisons

� At 105 secs/day and 106 comparisons/sec,

it would take 5 days

� For �	 � 	�� million, it takes more than a year…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

Step 2: Minhashing: Convert large sets to

short signatures, while preserving similarity

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

� Many similarity problems can be

formalized as finding subsets that

have significant intersection

� Encode sets using 0/1 (bit, boolean) vectors

� One dimension per element in the universal set

� Interpret set intersection as bitwise AND, and

set union as bitwise OR

� Example: C1 = 10111; C2 = 10011

� Size of intersection = 3; size of union = 4,

� Jaccard similarity (not distance) = 3/4

� Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 26

� Rows = elements (shingles)
� Columns = sets (documents)

� 1 in row e and column s if and only
if e is a member of s

� Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

� Typical matrix is sparse!

� Each document is a column:
� Example: sim(C1 ,C2) = ?

� Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

� d(C1,C2) = 1 – (Jaccard similarity) = 3/6
27J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in
g
le
s

� So far:

� Documents → Sets of shingles

� Represent sets as boolean vectors in a matrix

� Next goal: Find similar columns while

computing small signatures

� Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28

� Next Goal: Find similar columns, Small signatures

� Naïve approach:

� 1) Signatures of columns: small summaries of columns

� 2) Examine pairs of signatures to find similar columns

� Essential: Similarities of signatures and columns are related

� 3) Optional: Check that columns with similar signatures

are really similar

� Warnings:

� Comparing all pairs may take too much time: Job for LSH

� These methods can produce false negatives, and even false

positives (if the optional check is not made)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 29

� Key idea: “hash” each column C to a small

signature h(C), such that:

� (1) h(C) is small enough that the signature fits in RAM

� (2) sim(C1, C2) is the same as the “similarity” of

signatures h(C1) and h(C2)

� Goal: Find a hash function h(·) such that:

� If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

� If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

� Hash docs into buckets. Expect that “most” pairs

of near duplicate docs hash into the same bucket!
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 30

� Goal: Find a hash function h(·) such that:

� if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

� if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

� Clearly, the hash function depends on

the similarity metric:

� Not all similarity metrics have a suitable

hash function

� There is a suitable hash function for

the Jaccard similarity: It is called Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 31

32

� Imagine the rows of the boolean matrix

permuted under random permutation ππππ

� Define a “hash” function h
ππππ
(C) = the index of

the first (in the permuted order ππππ) row in

which column C has value 1:

h
ππππ
(C) = min

ππππ
ππππ(C)

� Use several (e.g., 100) independent hash

functions (that is, permutations) to create a

signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

33

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation ππππ

Note: Another (equivalent) way is to

store row indexes: 1 5 1 5

2 3 1 3

6 4 6 4

� Choose a random permutation ππππ

� Claim: Pr[h
ππππ
(C1) = h

ππππ
(C2)] = sim(C1, C2)

� Why?

� Let X be a doc (set of shingles), y∈∈∈∈ X is a shingle

� Then: Pr[ππππ(y) = min(ππππ(X))] = 1/|X|

� It is equally likely that any y∈∈∈∈ X is mapped to the min element

� Let y be s.t. π(y) = min(π(C1∪C2))

� Then either: π(y) = min(π(C1)) if y ∈ C1 , or

π(y) = min(π(C2)) if y ∈ C2

� So the prob. that both are true is the prob. y ∈ C1 ∩ C2

� Pr[min(ππππ(C1))=min(ππππ(C2))]=|C1∩∩∩∩C2|/|C1∪∪∪∪C2|= sim(C1, C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 34

01

10

00

11

00

00

One of the two

cols had to have

1 at position y

� Given cols C1 and C2, rows may be classified as:

C1 C2

A 1 1

B 1 0

C 0 1

D 0 0

� a = # rows of type A, etc.

� Note: sim(C1, C2) = a/(a +b +c)
� Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

� Look down the cols C1 and C2 until we see a 1

� If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not
35J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

36

� We know: Pr[h
ππππ
(C1) = h

ππππ
(C2)] = sim(C1, C2)

� Now generalize to multiple hash functions

� The similarity of two signatures is the

fraction of the hash functions in which they

agree

� Note: Because of the Min-Hash property, the

similarity of columns is the same as the

expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

37J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0

Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation ππππ

� Pick K=100 random permutations of the rows

� Think of sig(C) as a column vector

� sig(C)[i] = according to the i-th permutation, the

index of the first row that has a 1 in column C

sig(C)[i] = min (ππππi(C))

� Note: The sketch (signature) of document C is

small ~��� bytes!

� We achieved our goal! We “compressed”

long bit vectors into short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 38

� Permuting rows even once is prohibitive

� Row hashing!

� Pick K = 100 hash functions ki

� Ordering under ki gives a random row permutation!

� One-pass implementation

� For each column C and hash-func. ki keep a “slot” for

the min-hash value

� Initialize all sig(C)[i] = ∞∞∞∞

� Scan rows looking for 1s

� Suppose row j has 1 in column C

� Then for each ki :

� If ki(j) < sig(C)[i], then sig(C)[i] ←←←← ki(j)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 39

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b random integers

p prime number (p > N)

Step 3: Locality-Sensitive Hashing:

Focus on pairs of signatures likely to be from

similar documents

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

� Goal: Find documents with Jaccard similarity at

least s (for some similarity threshold, e.g., s=0.8)

� LSH – General idea: Use a function f(x,y) that

tells whether x and y is a candidate pair: a pair

of elements whose similarity must be evaluated

� For Min-Hash matrices:

� Hash columns of signature matrix M to many buckets

� Each pair of documents that hashes into the

same bucket is a candidate pair

41J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

� Pick a similarity threshold s (0 < s < 1)

� Columns x and y of M are a candidate pair if

their signatures agree on at least fraction s of

their rows:

M (i, x) = M (i, y) for at least frac. s values of i

� We expect documents x and y to have the same

(Jaccard) similarity as their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 42

1212

1412

2121

� Big idea: Hash columns of

signature matrix M several times

� Arrange that (only) similar columns are

likely to hash to the same bucket, with

high probability

� Candidate pairs are those that hash to

the same bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 43

1212

1412

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 44

Signature matrix M

r rows

per band

b bands

One

signature

1212

1412

2121

� Divide matrix M into b bands of r rows

� For each band, hash its portion of each

column to a hash table with k buckets

� Make k as large as possible

� Candidate column pairs are those that hash

to the same bucket for ≥≥≥≥ 1 band

� Tune b and r to catch most similar pairs,

but few non-similar pairs

45J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 46

� There are enough buckets that columns are

unlikely to hash to the same bucket unless

they are identical in a particular band

� Hereafter, we assume that “same bucket”

means “identical in that band”

� Assumption needed only to simplify analysis,

not for correctness of algorithm

47J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Assume the following case:

� Suppose 100,000 columns of M (100k docs)

� Signatures of 100 integers (rows)

� Therefore, signatures take 40Mb

� Choose b = 20 bands of r = 5 integers/band

� Goal: Find pairs of documents that

are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 48

1212

1412

2121

� Find pairs of ≥≥≥≥ s=0.8 similarity, set b=20, r=5
� Assume: sim(C1, C2) = 0.8

� Since sim(C1, C2) ≥ s, we want C1, C2 to be a candidate
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

� Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

� Probability C1, C2 are not similar in all of the 20
bands: (1-0.328)20 = 0.00035

� i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

� We would find 99.965% pairs of truly similar documents

49J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

� Find pairs of ≥≥≥≥ s=0.8 similarity, set b=20, r=5
� Assume: sim(C1, C2) = 0.3

� Since sim(C1, C2) < s we want C1, C2 to hash to NO
common buckets (all bands should be different)

� Probability C1, C2 identical in one particular
band: (0.3)5 = 0.00243

� Probability C1, C2 identical in at least 1 of 20
bands: 1 - (1 - 0.00243)20 = 0.0474

� In other words, approximately 4.74% pairs of docs
with similarity 0.3% end up becoming candidate pairs

� They are false positives since we will have to examine them
(they are candidate pairs) but then it will turn out their
similarity is below threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 50

1212

1412

2121

� Pick:

� The number of Min-Hashes (rows of M)

� The number of bands b, and

� The number of rows r per band

to balance false positives/negatives

� Example: If we had only 15 bands of 5

rows, the number of false positives would

go down, but the number of false negatives

would go up

51J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im
ila
ri
ty
 t
h
re
sh
o
ld
 s

No chance
if t < s

Probability = 1
if t > s

52J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 53

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

� Columns C1 and C2 have similarity t

� Pick any band (r rows)

� Prob. that all rows in band equal = tr

� Prob. that some row in band unequal = 1 - tr

� Prob. that no band identical = (1 - tr)b

� Prob. that at least 1 band identical =

1 - (1 - tr)b

54J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

55J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

� Similarity threshold s

� Prob. that at least 1 band is identical:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 56

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

� Picking r and b to get the best S-curve

� 50 hash-functions (r=5, b=10)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate

Green area: False Positive rate

Similarity

P
ro

b
. s

h
a

ri
n

g
 a

 b
u

ck
e

t

� Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

� Check in main memory that candidate pairs
really do have similar signatures

� Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

58J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Shingling: Convert documents to sets

� We used hashing to assign each shingle an ID

� Min-Hashing: Convert large sets to short

signatures, while preserving similarity

� We used similarity preserving hashing to generate

signatures with property Pr[h
ππππ
(C1) = h

ππππ
(C2)] = sim(C1, C2)

� We used hashing to get around generating random

permutations

� Locality-Sensitive Hashing: Focus on pairs of

signatures likely to be from similar documents

� We used hashing to find candidate pairs of similarity ≥ s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 59

