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10 nearest neighbors from a collection of 20,000 images
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� Many problems can be expressed as 
finding “similar” sets:

� Find near-neighbors in high-dimensional space

� Examples:

� Pages with similar words

� For duplicate detection, classification by topic

� Customers who purchased similar products

� Products with similar customer sets

� Images with similar features

� Users who visited similar websites
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� Given: High dimensional data points ��, ��, …

� For example: Image is a long vector of pixel colors
1 2 1

0 2 1

0 1 0

→ 
1	2	1	0	2	1	0	1	0�

� And some distance function ���, ���

� Which quantifies the “distance” between �� and ��

� Goal: Find all pairs of data points ���, ��� that are 

within some distance threshold  ��, �� � �

� Note: Naïve solution would take � �� ����

where � is the number of data points

� MAGIC: This can be done in � � !! How?
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� Last time: Finding frequent pairs
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Naïve solution:

Single pass but requires 

space quadratic in the 

number of items

It
e
m
s
 1
 
K

Items 1 K

Count of pair {i,j}

in the data

A-Priori:

First pass: Find frequent singletons

For a pair to be a frequent pair 

candidate, its singletons have to be 

frequent!

Second pass:

Count only candidate pairs!
N   number of distinct items

K   number of items with support ≥ s



� Last time: Finding frequent pairs

� Further improvement: PCY

� Pass 1:

� Count exact frequency of each item:

� Take pairs of items {i,j}, hash them into B buckets and 

count of the number of pairs that hashed to each bucket:
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Items 1 N

Basket 1: {1,2,3}

Pairs: {1,2} {1,3} {2,3}

Buckets 1 B

2                        1



� Last time: Finding frequent pairs

� Further improvement: PCY

� Pass 1:

� Count exact frequency of each item:

� Take pairs of items {i,j}, hash them into B buckets and 

count of the number of pairs that hashed to each bucket:

� Pass 2:

� For a pair {i,j} to be a candidate for 

a frequent pair, its singletons {i}, {j} 

have to be frequent and the pair 

has to hash to a frequent bucket!
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� Last time: Finding frequent pairs

� Further improvement: PCY

� Pass 1:

� Count exact frequency of each item:

� Take pairs of items {i,j}, hash them into B buckets and 

count of the number of pairs that hashed to each bucket:

� Pass 2:

� For a pair {i,j} to be a candidate for 

a frequent pair, its singletons have 

to be frequent and its  has to hash

to a frequent bucket!
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Items 1 N

Basket 1: {1,2,3}

Pairs: {1,2} {1,3} {2,3}

Basket 2: {1,2,4}

Pairs: {1,2} {1,4} {2,4}

Buckets 1 B

3 1         2

Previous lecture: A-Priori
Main idea: Candidates
Instead of keeping a count of each pair, only keep a count  

of candidate pairs!

Today’s lecture: Find pairs of similar docs
Main idea: Candidates
-- Pass 1: Take documents and hash them to buckets such that 

documents that are similar hash to the same bucket

-- Pass 2: Only compare documents that are candidates 

(i.e., they hashed to a same bucket)

Benefits: Instead of O(N2) comparisons, we need O(N) 

comparisons to find similar documents





� Goal: Find near-neighbors in high-dim. space

� We formally define “near neighbors” as 
points that are a “small distance” apart

� For each application, we first need to define 
what “distance” means

� Today: Jaccard distance/similarity

� The Jaccard similarity of two sets is the size of their 
intersection divided by the size of their union:
sim(C1, C2) = |C1∩∩∩∩C2|/|C1∪∪∪∪C2|

� Jaccard distance: d(C1, C2) = 1 - |C1∩∩∩∩C2|/|C1∪∪∪∪C2|
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3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8



� Goal: Given a large number (� in the millions or 
billions) of documents, find “near duplicate” pairs

� Applications:

� Mirror websites, or approximate mirrors

� Don’t want to show both in search results

� Similar news articles at many news sites

� Cluster articles by “same story”

� Problems:

� Many small pieces of one document can appear 
out of order in another

� Too many documents to compare all pairs

� Documents are so large or so many that they cannot 
fit in main memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15



1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short 

signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 

pairs of signatures likely to be from 

similar documents

� Candidate pairs!
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Step 1: Shingling: Convert documents to sets
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� Step 1: Shingling: Convert documents to sets

� Simple approaches:

� Document = set of words appearing in document

� Document = set of “important” words

� Don’t work well for this application. Why?

� Need to account for ordering of words!

� A different way: Shingles!
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� A k-shingle (or k-gram) for a document is a 

sequence of k tokens that appears in the doc

� Tokens can be characters, words or something 

else, depending on the application

� Assume tokens = characters for examples

� Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

� Option: Shingles as a bag (multiset), count ab

twice: S’(D1) = {ab, bc, ca, ab}
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� To compress long shingles, we can hash them 

to (say) 4 bytes

� Represent a document by the set of hash 

values of its k-shingles

� Idea: Two documents could (rarely) appear to have 

shingles in common, when in fact only the hash-

values were shared

� Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

Hash the singles: h(D1) = {1, 5, 7}
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� Document D1 is a set of its k-shingles C1=S(D1)

� Equivalently, each document is a 

0/1 vector in the space of k-shingles

� Each unique shingle is a dimension

� Vectors are very sparse

� A natural similarity measure is the 

Jaccard similarity:

sim(D1, D2) = |C1∩C2|/|C1∪C2|
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� Documents that have lots of shingles in 

common have similar text, even if the text 

appears in different order

� Caveat: You must pick k large enough, or most 

documents will have most shingles

� k = 5 is OK for short documents

� k = 10 is better for long documents
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� Suppose we need to find near-duplicate 

documents among � � � million documents

� Naïvely, we would have to compute pairwise 

Jaccard similarities for every pair of docs

� ��� � ��/� ≈ 5*1011 comparisons

� At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

� For �	 � 	�� million, it takes more than a year…
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Step 2: Minhashing: Convert large sets to 

short signatures, while preserving similarity
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� Many similarity problems can be 

formalized as finding subsets that 

have significant intersection

� Encode sets using 0/1 (bit, boolean) vectors 

� One dimension per element in the universal set

� Interpret set intersection as bitwise AND, and 

set union as bitwise OR

� Example: C1 = 10111; C2 = 10011

� Size of intersection = 3; size of union = 4, 

� Jaccard similarity (not distance) = 3/4

� Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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� Rows = elements (shingles)
� Columns = sets (documents)

� 1 in row e and column s if and only 
if e is a member of s

� Column similarity is the Jaccard
similarity of the corresponding 
sets (rows with value 1)

� Typical matrix is sparse!

� Each document is a column:
� Example: sim(C1 ,C2) = ?

� Size of intersection = 3; size of union = 6, 
Jaccard similarity (not distance) = 3/6

� d(C1,C2) = 1 – (Jaccard similarity) = 3/6
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� So far:

� Documents → Sets of shingles

� Represent sets as boolean vectors in a matrix

� Next goal: Find similar columns while 

computing small signatures

� Similarity of columns == similarity of signatures
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� Next Goal: Find similar columns, Small signatures

� Naïve approach:

� 1) Signatures of columns: small summaries of columns

� 2) Examine pairs of signatures to find similar columns

� Essential: Similarities of signatures and columns are related

� 3) Optional: Check that columns with similar signatures 

are really similar

� Warnings:

� Comparing all pairs may take too much time: Job for LSH

� These methods can produce false negatives, and even false 

positives (if the optional check is not made)
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� Key idea: “hash” each column C to a small 

signature h(C), such that:

� (1) h(C) is small enough that the signature fits in RAM

� (2) sim(C1, C2) is the same as the “similarity” of 

signatures h(C1) and h(C2)

� Goal: Find a hash function h(·) such that:

� If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

� If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

� Hash docs into buckets. Expect that “most” pairs 

of near duplicate docs hash into the same bucket!
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 30



� Goal: Find a hash function h(·) such that:

� if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

� if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

� Clearly, the hash function depends on 

the similarity metric:

� Not all similarity metrics have a suitable 

hash function

� There is a suitable hash function for 

the Jaccard similarity: It is called Min-Hashing
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� Imagine the rows of the boolean matrix 

permuted under random permutation ππππ

� Define a “hash” function h
ππππ
(C) = the index of 

the first (in the permuted order ππππ) row in 

which column C has value 1:

h
ππππ
(C) = min

ππππ
ππππ(C)

� Use several (e.g., 100) independent hash 

functions (that is, permutations) to create a 

signature of a column
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2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation ππππ

Note: Another (equivalent) way is to 

store row indexes: 1 5 1 5

2 3 1 3

6 4 6 4



� Choose a random permutation ππππ

� Claim: Pr[h
ππππ
(C1) = h

ππππ
(C2)] = sim(C1, C2) 

� Why?

� Let X be a doc (set of shingles), y∈∈∈∈ X is a shingle

� Then: Pr[ππππ(y) = min(ππππ(X))] = 1/|X|

� It is equally likely that any y∈∈∈∈ X is mapped to the min element

� Let y be s.t. π(y) = min(π(C1∪C2))

� Then either: π(y) = min(π(C1))  if y ∈ C1 , or

π(y) = min(π(C2))  if y ∈ C2

� So the prob. that both are true is the prob. y ∈ C1 ∩ C2

� Pr[min(ππππ(C1))=min(ππππ(C2))]=|C1∩∩∩∩C2|/|C1∪∪∪∪C2|= sim(C1, C2) 
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� Given cols C1 and C2, rows may be classified as:

C1 C2

A 1 1

B 1 0

C 0 1

D 0 0

� a = # rows of type A, etc.

� Note: sim(C1, C2) = a/(a +b +c)
� Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 

� Look down the cols C1 and C2 until we see a 1

� If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not
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� We know: Pr[h
ππππ
(C1) = h

ππππ
(C2)] = sim(C1, C2)

� Now generalize to multiple hash functions

� The similarity of two signatures is the 

fraction of the hash functions in which they 

agree

� Note: Because of the Min-Hash property, the 

similarity of columns is the same as the 

expected similarity of their signatures
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Similarities:

1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0

Sig/Sig 0.67    1.00    0       0
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� Pick K=100 random permutations of the rows

� Think of sig(C) as a column vector

� sig(C)[i] = according to the i-th permutation, the 

index of the first row that has a 1 in column C

sig(C)[i] = min (ππππi(C))

� Note: The sketch (signature) of document C is 

small  ~��� bytes!

� We achieved our goal! We “compressed” 

long bit vectors into short signatures
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� Permuting rows even once is prohibitive

� Row hashing!

� Pick K = 100 hash functions ki

� Ordering under ki gives a random row permutation!

� One-pass implementation

� For each column C and hash-func. ki keep a “slot” for 

the min-hash value

� Initialize all sig(C)[i] = ∞∞∞∞

� Scan rows looking for 1s

� Suppose row j has 1 in column C

� Then for each ki :

� If ki(j) < sig(C)[i], then sig(C)[i] ←←←← ki(j)
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How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b   random integers

p   prime number (p > N)



Step 3: Locality-Sensitive Hashing:

Focus on pairs of signatures likely to be from 

similar documents
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� Goal: Find documents with Jaccard similarity at 

least s (for some similarity threshold, e.g., s=0.8)

� LSH – General idea: Use a function f(x,y) that 

tells whether x and y is a candidate pair: a pair 

of elements whose similarity must be evaluated

� For Min-Hash matrices: 

� Hash columns of signature matrix M to many buckets

� Each pair of documents that hashes into the 

same bucket is a candidate pair
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� Pick a similarity threshold s (0 < s < 1)

� Columns x and y of M are a candidate pair if 

their signatures agree on at least fraction s of 

their rows: 

M (i, x) = M (i, y) for at least frac. s values of i

� We expect documents x and y to have the same 

(Jaccard) similarity as their signatures
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� Big idea: Hash columns of 

signature matrix M several times

� Arrange that (only) similar columns are 

likely to hash to the same bucket, with 

high probability

� Candidate pairs are those that hash to 

the same bucket
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Signature matrix  M

r rows

per band

b bands

One
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� Divide matrix M into b bands of r rows

� For each band, hash its portion of each 

column to a hash table with k buckets

� Make k as large as possible

� Candidate column pairs are those that hash 

to the same bucket for ≥≥≥≥ 1 band

� Tune b and r to catch most similar pairs, 

but few non-similar pairs
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Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical 

(candidate pair)

Columns 6 and 7 are

surely different.
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� There are enough buckets that columns are 

unlikely to hash to the same bucket unless 

they are identical in a particular band

� Hereafter, we assume that “same bucket” 

means “identical in that band”

� Assumption needed only to simplify analysis, 

not for correctness of algorithm
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Assume the following case:

� Suppose 100,000 columns of M (100k docs)

� Signatures of 100 integers (rows)

� Therefore, signatures take 40Mb

� Choose b = 20 bands of r = 5 integers/band

� Goal: Find pairs of documents that 

are at least s = 0.8 similar
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� Find pairs of ≥≥≥≥ s=0.8 similarity, set b=20, r=5
� Assume: sim(C1, C2) = 0.8

� Since sim(C1, C2) ≥ s, we want C1, C2 to be a candidate 
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

� Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

� Probability C1, C2 are not similar in all of the 20 
bands: (1-0.328)20 = 0.00035 

� i.e., about 1/3000th of the 80%-similar column pairs 
are false negatives (we miss them)

� We would find 99.965% pairs of truly similar documents
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� Find pairs of ≥≥≥≥ s=0.8 similarity, set b=20, r=5
� Assume: sim(C1, C2) = 0.3

� Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

� Probability C1, C2 identical in one particular 
band: (0.3)5 = 0.00243

� Probability C1, C2 identical in at least 1 of 20 
bands: 1 - (1 - 0.00243)20 = 0.0474

� In other words, approximately 4.74% pairs of docs 
with similarity 0.3% end up becoming candidate pairs

� They are false positives since we will have to examine them 
(they are candidate pairs) but then it will turn out their 
similarity is below threshold s
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� Pick:

� The number of Min-Hashes (rows of M) 

� The number of bands b, and 

� The number of rows r per band

to balance false positives/negatives

� Example: If we had only 15 bands of 5 

rows, the number of false positives would 

go down, but the number of false negatives 

would go up
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Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im
ila
ri
ty
 t
h
re
sh
o
ld
 s

No chance
if t < s

Probability = 1 
if t > s
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Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket



� Columns C1 and C2 have similarity t

� Pick any band (r rows)

� Prob. that all rows in band equal = tr

� Prob. that some row in band unequal = 1 - tr

� Prob. that no band identical  = (1 - tr)b

� Prob. that at least 1 band identical =                  

1 - (1 - tr)b
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t r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r 
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Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket



� Similarity threshold s

� Prob. that at least 1 band is identical:
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s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996



� Picking r and b to get the best S-curve

� 50 hash-functions (r=5, b=10)
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� Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

� Check in main memory that candidate pairs
really do have similar signatures

� Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents
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� Shingling: Convert documents to sets

� We used hashing to assign each shingle an ID

� Min-Hashing: Convert large sets to short 

signatures, while preserving similarity

� We used similarity preserving hashing to generate 

signatures with property Pr[h
ππππ
(C1) = h

ππππ
(C2)] = sim(C1, C2)

� We used hashing to get around generating random 

permutations

� Locality-Sensitive Hashing: Focus on pairs of 

signatures likely to be from similar documents

� We used hashing to find candidate pairs of similarity ≥ s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 59


