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� More algorithms for streams:

� (1) Filtering a data stream: Bloom filters

� Select elements with property x from stream

� (2) Counting distinct elements: Flajolet-Martin

� Number of distinct elements in the last k elements 

of the stream

� (3) Estimating moments: AMS method

� Estimate std. dev. of last k elements

� (4) Counting frequent items
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� Each element of data stream is a tuple

� Given a list of keys S

� Determine which tuples of stream are in S

� Obvious solution: Hash table

� But suppose we do not have enough memory to 

store all of S in a hash table

� E.g., we might be processing millions of filters 

on the same stream
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� Example: Email spam filtering

� We know 1 billion “good” email addresses

� If an email comes from one of these, it is NOT

spam

� Publish-subscribe systems

� You are collecting lots of messages (news articles)

� People express interest in certain sets of keywords

� Determine whether each message matches user’s 

interest

5J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 



� Given a set of keys S that we want to filter

� Create a bit array B of n bits, initially all 0s

� Choose a hash function h with range [0,n)

� Hash each member of s∈∈∈∈ S to one of 

n buckets, and set that bit to 1, i.e., B[h(s)]=1

� Hash each element a of the stream and 

output only those that hash to bit that was 

set to 1

� Output a if B[h(a)] == 1
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� Creates false positives but no false negatives

� If the item is in S we surely output it, if not we may 

still output it
7

Item

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least 

one of the items in S hashed to.

Hash 

func h

Drop the item.
It hashes to a bucket set 

to 0 so it is surely not in S.

Bit array B
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� |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

� If the email address is in S, then it surely 
hashes to a bucket that has the big set to 1, 
so it always gets through (no false negatives)

� Approximately 1/8 of the bits are set to 1, so 
about 1/8th of the addresses not in S get 
through to the output (false positives)

� Actually, less than 1/8th, because more than one 
address might hash to the same bit
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� More accurate analysis for the number of 

false positives 

� Consider: If we throw m darts into n equally 

likely targets, what is the probability that 

a target gets at least one dart?

� In our case:

� Targets = bits/buckets

� Darts = hash values of items
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� We have m darts, n targets

� What is the probability that a target gets at 

least one dart?

10

(1 – 1/n)

Probability some

target X not hit

by a dart

m

1 -

Probability at

least one dart

hits target X

n( / n)

Equivalent
Equals 1/e

as n →→→→∞

1 – e–m/n
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� Fraction of 1s in the array B =

= probability of false positive = 1 – e-m/n

� Example: 109 darts, 8∙109 targets

� Fraction of 1s in B = 1 – e-1/8 = 0.1175

� Compare with our earlier estimate: 1/8 = 0.125
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� Consider: |S| = m, |B| = n

� Use k independent hash functions h1 ,…, hk

� Initialization:

� Set B to all 0s

� Hash each element s∈∈∈∈ S using each hash function hi, 

set B[hi(s)] = 1 (for each i = 1,.., k)

� Run-time:

� When a stream element with key x arrives

� If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S

� That is, x hashes to a bucket set to 1 for every hash function hi(x)

� Otherwise discard the element x
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� What fraction of the bit vector B are 1s?

� Throwing k∙m darts at n targets

� So fraction of 1s is (1 – e-km/n)

� But we have k independent hash functions

and we only let the element x through if all k

hash element x to a bucket of value 1

� So, false positive probability = (1 – e-km/n)k
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� m = 1 billion, n = 8 billion

� k = 1: (1 – e-1/8) = 0.1175

� k = 2: (1 – e-1/4)2 = 0.0493

� What happens as we 

keep increasing k?

� “Optimal” value of k: n/m ln(2)

� In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

� Error at k = 6: (1 – e-1/6)2 = 0.0235
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� Bloom filters guarantee no false negatives, 

and use limited memory

� Great for pre-processing before more 

expensive checks

� Suitable for hardware implementation

� Hash function computations can be parallelized

� Is it better to have 1 big B or k small Bs?

� It is the same: (1 – e-km/n)k  vs. (1 – e-m/(n/k))k

� But keeping 1 big B is simpler
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� Problem:

� Data stream consists of a universe of elements 

chosen from a set of size N

� Maintain a count of the number of distinct 

elements seen so far

� Obvious approach:

Maintain the set of elements seen so far

� That is, keep a hash table of all the distinct 

elements seen so far

17J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 



� How many different words are found among 

the Web pages being crawled at a site?

� Unusually low or high numbers could indicate 

artificial pages (spam?)

� How many different Web pages does each 

customer request in a week?

� How many distinct products have we sold in 

the last week?
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� Real problem: What if we do not have space 

to maintain the set of elements seen so far?

� Estimate the count in an unbiased way

� Accept that the count may have a little error, 

but limit the probability that the error is large
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� Pick a hash function h that maps each of the 

N elements to at least  log2 N bits

� For each stream element a, let r(a) be the 

number of trailing 0s in h(a)

� r(a) = position of first 1 counting from the right

� E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

� Record R = the maximum r(a) seen

� R = maxa r(a),  over all the items a seen so far

� Estimated number of distinct elements = 2R
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� Very very rough and heuristic intuition why 
Flajolet-Martin works:

� h(a) hashes a with equal prob. to any of N values

� Then h(a) is a sequence of log2 N bits, 
where 2-r fraction of all as have a tail of r zeros 

� About 50% of as hash to ***0

� About 25% of as hash to **00

� So, if we saw the longest tail of r=2 (i.e., item hash 
ending *100) then we have probably seen 
about 4 distinct items so far

� So, it takes to hash about 2r items before we 
see one with zero-suffix of length r
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� Now we show why Flajolet-Martin works

� Formally, we will show that probability of 

finding a tail of r zeros:

� Goes to 1 if� ≫ ��

� Goes to 0 if� ≪ ��

where � is the number of distinct elements 

seen so far in the stream

� Thus, 2R will almost always be around m!
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� What is the probability that a given h(a) ends 

in at least r zeros is 2-r

� h(a) hashes elements uniformly at random

� Probability that a random number ends in 

at least r zeros is 2-r

� Then, the probability of NOT seeing a tail 

of length r among m elements: 

� � ��� �

23

Prob. that given h(a) ends 

in fewer than r zeros
Prob. all end in 

fewer than r zeros.
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� Note:

� Prob. of NOT finding a tail of length r is:

� If m << 2r, then prob. tends to 1

� as  m/2r
→→→→ 0

� So, the probability of finding a tail of length r tends to 0

� If m >> 2r, then prob. tends to 0

� as  m/2r 
→→→→ ∞∞∞∞

� So, the probability of finding a tail of length r tends to 1

� Thus, 2R will almost always be around m!

24J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 

1)21(
2

=≈−

−
−−

r
mmr

e

0)21(
2

=≈−

−
−−

r
mmr

e

rrr
mmrmr

e
−−

−−−

≈−=−
2)2(2

)21()21(



� E[2R] is actually infinite

� Probability halves when R →→→→ R+1, but value doubles 

� Workaround involves using many hash 

functions hi and getting many samples of Ri

� How are samples Ri combined?

� Average? What if one very large value �	
?

� Median? All estimates are a power of 2

� Solution:

� Partition your samples into small groups

� Take the median of groups

� Then take the average of the medians
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� Suppose a stream has elements chosen 

from a set A of N values

� Let mi be the number of times value i occurs 

in the stream

� The kth moment is

27

∑
∈Ai

k

i
m )(
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� 0thmoment = number of distinct elements

� The problem just considered

� 1st moment = count of the numbers of 

elements = length of the stream

� Easy to compute

� 2nd moment = surprise number S =

a measure of how uneven the distribution is
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� Stream of length 100

� 11 distinct values

� Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

Surprise S = 910

� Item counts: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1  

Surprise S = 8,110
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� AMS method works for all moments

� Gives an unbiased estimate

� We will just concentrate on the 2nd moment S

� We pick and keep track of many variables X:

� For each variable X we store X.el and X.val

� X.el corresponds to the item i

� X.val corresponds to the count of item i

� Note this requires a count in main memory, 

so number of Xs is limited

� Our goal is to compute � � ∑ �

�
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� How to set X.val and X.el?

� Assume stream has length n (we relax this later)

� Pick some random time t (t<n) to start, 

so that any time is equally likely

� Let at time t the stream have item i. We set X.el = i

� Then we maintain count c (X.val = c) of the number 

of is in the stream starting from the chosen time t

� Then the estimate of the 2nd moment (∑ �

�


 ) is: 

� � ���� 	� 	�	�� � �	– 	��

� Note, we will keep track of multiple Xs, (X1, X2,… Xk)

and our final estimate will be � � �/�∑ �����
�
�
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� 2nd moment is � � ∑ �

�




� ct … number of times item at time t appears 

from time t onwards (c1=ma , c2=ma-1, c3=mb)

� � ���� �
�

�
∑ ����� � ��
�
���

�
�

�
∑ �	�� � � � � �⋯� ��
 � ��
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Time t when

the last i is 

seen (c
t
=1)

Time t when

the penultimate

i is seen (c
t
=2)

Time t when

the first i is 

seen (c
t
=m

i
)

Group times

by the value

seen

a a a a

1 32 ma

b b b b

Count:

Stream:

mi … total count of 

item i in the stream 

(we are assuming 

stream has length n)



� ! "�#� �
$

%
∑ &	�1 � 3 � 5 �⋯� 2+, � 1�,

� Little side calculation:	 1 � 3 � 5 �⋯� 2+, � 1 �

∑ �2- � 1�
./
,�$ � 2

./ ./0$

1
�+, � �+, �

1		

� Then � ���� �
�

�
∑ 	�	 �


�



� So, 2 3�4� � ∑ �

�


 � �

� We have the second moment (in expectation)!
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� For estimating kth moment we essentially use the 

same algorithm but change the estimate:

� For k=2 we used n (2∙c – 1)

� For k=3 we use: n (3∙c2 – 3c + 1) (where c=X.val)

� Why?

� For k=2: Remember we had 1 � 3 � 5 �⋯� 2+, � 1

and we showed terms 2c-1 (for c=1,…,m) sum to m2

� ∑ 25 � 1.
6�$ � ∑ 51.

6�$ � ∑ 5 � 1 1 �.
6�$ +1

� So: �� � � � �� � � � � �

� For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

� Generally: Estimate � &	�57 � 5 � 1 7�
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� In practice:

� Compute ���� 	� 	���	�	– 	��	for 
as many variables X as you can fit in memory

� Average them in groups

� Take median of averages

� Problem: Streams never end

� We assumed there was a number n, 
the number of positions in the stream

� But real streams go on forever, so n is 
a variable – the number of inputs seen so far
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� (1) The variables X have n as a factor –
keep n separately; just hold the count in X

� (2) Suppose we can only store k counts.  
We must throw some Xs out as time goes on:

� Objective: Each starting time t is selected with 
probability k/n 

� Solution: (fixed-size sampling!)

� Choose the first k times for k variables

� When the nth element arrives (n > k), choose it with 
probability k/n

� If you choose it, throw one of the previously stored 
variables X out, with equal probability
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� New Problem: Given a stream, which items 

appear more than s times in the window?

� Possible solution: Think of the stream of 

baskets as one binary stream per item

� 1 = item present; 0 = not present

� Use DGIM to estimate counts of 1s for all items
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� In principle, you could count frequent pairs 

or even larger sets the same way

� One stream per itemset

� Drawbacks:

� Only approximate

� Number of itemsets is way too big
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� Exponentially decaying windows: A heuristic 

for selecting likely frequent item(sets)

� What are “currently” most popular movies?

� Instead of computing the raw count in last N elements

� Compute a smooth aggregation over the whole stream

� If stream is a1, a2,… and we are taking the sum 

of the stream, take the answer at time t to be: 

� ∑ 8
 � � �
��
�


��

� c is a constant, presumably tiny, like 10-6 or 10-9

� When new at+1 arrives: 

Multiply current sum by (1-c) and add at+1
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� If each ai is an “item” we can compute the 

characteristic function of each possible 

item x as an Exponentially Decaying Window

� That is: ∑ 9
 ⋅ � � �
��
�


��

where δi=1 if ai=x, and 0 otherwise

� Imagine that for each item x we have a binary 

stream (1 if x appears, 0 if x does not appear)

� New item x arrives:

� Multiply all counts by (1-c)

� Add +1 to count for element x

� Call this sum the “weight” of item x
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� Important property: Sum over all weights 

∑ � � � �� is 1/[1 – (1 – c)] = 1/c
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� What are “currently” most popular movies?

� Suppose we want to find movies of weight > ½

� Important property: Sum over all weights 

∑ 1 � 5 ;; is 1/[1 – (1 – c)] = 1/c

� Thus:

� There cannot be more than 2/c movies with 

weight of ½ or more

� So, 2/c is a limit on the number of 

movies being counted at any time
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� Count (some) itemsets in an E.D.W.

� What are currently “hot” itemsets?

� Problem: Too many itemsets to keep counts of 

all of them in memory

� When a basket B comes in:

� Multiply all counts by (1-c)

� For uncounted items in B, create new count

� Add 1 to count of any item in B and to any itemset

contained in B that is already being counted

� Drop counts < ½

� Initiate new counts (next slide)
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� Start a count for an itemset S ⊆⊆⊆⊆ B if every 
proper subset of S had a count prior to arrival 
of basket B

� Intuitively: If all subsets of S are being counted 
this means they are “frequent/hot” and thus S has 
a potential to be “hot”

� Example:

� Start counting S={i, j} iff both i and j were counted 
prior to seeing B

� Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k}
were all counted prior to seeing B
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� Counts for single items <  (2/c)∙(avg. number 

of items in a basket)

� Counts for larger itemsets = ??

� But we are conservative about starting 

counts of large sets

� If we counted every set we saw, one basket 

of 20 items would initiate 1M counts
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