
Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Note to other teachers and users of these slides: We would be delighted if you found this our

material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify

them to fit your own needs. If you make use of a significant portion of these slides in your own

lecture, please include this message, or a link to our web site: http://www.mmds.org

� More algorithms for streams:

� (1) Filtering a data stream: Bloom filters

� Select elements with property x from stream

� (2) Counting distinct elements: Flajolet-Martin

� Number of distinct elements in the last k elements

of the stream

� (3) Estimating moments: AMS method

� Estimate std. dev. of last k elements

� (4) Counting frequent items

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 2

� Each element of data stream is a tuple

� Given a list of keys S

� Determine which tuples of stream are in S

� Obvious solution: Hash table

� But suppose we do not have enough memory to

store all of S in a hash table

� E.g., we might be processing millions of filters

on the same stream

4J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Example: Email spam filtering

� We know 1 billion “good” email addresses

� If an email comes from one of these, it is NOT

spam

� Publish-subscribe systems

� You are collecting lots of messages (news articles)

� People express interest in certain sets of keywords

� Determine whether each message matches user’s

interest

5J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Given a set of keys S that we want to filter

� Create a bit array B of n bits, initially all 0s

� Choose a hash function h with range [0,n)

� Hash each member of s∈∈∈∈ S to one of

n buckets, and set that bit to 1, i.e., B[h(s)]=1

� Hash each element a of the stream and

output only those that hash to bit that was

set to 1

� Output a if B[h(a)] == 1

6J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Creates false positives but no false negatives

� If the item is in S we surely output it, if not we may

still output it
7

Item

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least

one of the items in S hashed to.

Hash

func h

Drop the item.
It hashes to a bucket set

to 0 so it is surely not in S.

Bit array B

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

� If the email address is in S, then it surely
hashes to a bucket that has the big set to 1,
so it always gets through (no false negatives)

� Approximately 1/8 of the bits are set to 1, so
about 1/8th of the addresses not in S get
through to the output (false positives)

� Actually, less than 1/8th, because more than one
address might hash to the same bit

8J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� More accurate analysis for the number of

false positives

� Consider: If we throw m darts into n equally

likely targets, what is the probability that

a target gets at least one dart?

� In our case:

� Targets = bits/buckets

� Darts = hash values of items

9J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� We have m darts, n targets

� What is the probability that a target gets at

least one dart?

10

(1 – 1/n)

Probability some

target X not hit

by a dart

m

1 -

Probability at

least one dart

hits target X

n(/ n)

Equivalent
Equals 1/e

as n →→→→∞

1 – e–m/n

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Fraction of 1s in the array B =

= probability of false positive = 1 – e-m/n

� Example: 109 darts, 8∙109 targets

� Fraction of 1s in B = 1 – e-1/8 = 0.1175

� Compare with our earlier estimate: 1/8 = 0.125

11J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Consider: |S| = m, |B| = n

� Use k independent hash functions h1 ,…, hk

� Initialization:

� Set B to all 0s

� Hash each element s∈∈∈∈ S using each hash function hi,

set B[hi(s)] = 1 (for each i = 1,.., k)

� Run-time:

� When a stream element with key x arrives

� If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S

� That is, x hashes to a bucket set to 1 for every hash function hi(x)

� Otherwise discard the element x

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 12

(note: we have a

single array B!)

� What fraction of the bit vector B are 1s?

� Throwing k∙m darts at n targets

� So fraction of 1s is (1 – e-km/n)

� But we have k independent hash functions

and we only let the element x through if all k

hash element x to a bucket of value 1

� So, false positive probability = (1 – e-km/n)k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 13

� m = 1 billion, n = 8 billion

� k = 1: (1 – e-1/8) = 0.1175

� k = 2: (1 – e-1/4)2 = 0.0493

� What happens as we

keep increasing k?

� “Optimal” value of k: n/m ln(2)

� In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

� Error at k = 6: (1 – e-1/6)2 = 0.0235

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

� Bloom filters guarantee no false negatives,

and use limited memory

� Great for pre-processing before more

expensive checks

� Suitable for hardware implementation

� Hash function computations can be parallelized

� Is it better to have 1 big B or k small Bs?

� It is the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

� But keeping 1 big B is simpler

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15

� Problem:

� Data stream consists of a universe of elements

chosen from a set of size N

� Maintain a count of the number of distinct

elements seen so far

� Obvious approach:

Maintain the set of elements seen so far

� That is, keep a hash table of all the distinct

elements seen so far

17J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� How many different words are found among

the Web pages being crawled at a site?

� Unusually low or high numbers could indicate

artificial pages (spam?)

� How many different Web pages does each

customer request in a week?

� How many distinct products have we sold in

the last week?

18J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Real problem: What if we do not have space

to maintain the set of elements seen so far?

� Estimate the count in an unbiased way

� Accept that the count may have a little error,

but limit the probability that the error is large

19J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Pick a hash function h that maps each of the

N elements to at least log2 N bits

� For each stream element a, let r(a) be the

number of trailing 0s in h(a)

� r(a) = position of first 1 counting from the right

� E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

� Record R = the maximum r(a) seen

� R = maxa r(a), over all the items a seen so far

� Estimated number of distinct elements = 2R

20J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Very very rough and heuristic intuition why
Flajolet-Martin works:

� h(a) hashes a with equal prob. to any of N values

� Then h(a) is a sequence of log2 N bits,
where 2-r fraction of all as have a tail of r zeros

� About 50% of as hash to ***0

� About 25% of as hash to **00

� So, if we saw the longest tail of r=2 (i.e., item hash
ending *100) then we have probably seen
about 4 distinct items so far

� So, it takes to hash about 2r items before we
see one with zero-suffix of length r

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21

� Now we show why Flajolet-Martin works

� Formally, we will show that probability of

finding a tail of r zeros:

� Goes to 1 if� ≫ ��

� Goes to 0 if� ≪ ��

where � is the number of distinct elements

seen so far in the stream

� Thus, 2R will almost always be around m!

22J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� What is the probability that a given h(a) ends

in at least r zeros is 2-r

� h(a) hashes elements uniformly at random

� Probability that a random number ends in

at least r zeros is 2-r

� Then, the probability of NOT seeing a tail

of length r among m elements:

� � ��� �

23

Prob. that given h(a) ends

in fewer than r zeros
Prob. all end in

fewer than r zeros.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Note:

� Prob. of NOT finding a tail of length r is:

� If m << 2r, then prob. tends to 1

� as m/2r
→→→→ 0

� So, the probability of finding a tail of length r tends to 0

� If m >> 2r, then prob. tends to 0

� as m/2r
→→→→ ∞∞∞∞

� So, the probability of finding a tail of length r tends to 1

� Thus, 2R will almost always be around m!

24J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1)21(
2

=≈−

−
−−

r
mmr

e

0)21(
2

=≈−

−
−−

r
mmr

e

rrr
mmrmr

e
−−

−−−

≈−=−
2)2(2

)21()21(

� E[2R] is actually infinite

� Probability halves when R →→→→ R+1, but value doubles

� Workaround involves using many hash

functions hi and getting many samples of Ri

� How are samples Ri combined?

� Average? What if one very large value �	
?

� Median? All estimates are a power of 2

� Solution:

� Partition your samples into small groups

� Take the median of groups

� Then take the average of the medians
25J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Suppose a stream has elements chosen

from a set A of N values

� Let mi be the number of times value i occurs

in the stream

� The kth moment is

27

∑
∈Ai

k

i
m)(

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� 0thmoment = number of distinct elements

� The problem just considered

� 1st moment = count of the numbers of

elements = length of the stream

� Easy to compute

� 2nd moment = surprise number S =

a measure of how uneven the distribution is

28J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

∑
∈Ai

k

i
m)(

� Stream of length 100

� 11 distinct values

� Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

Surprise S = 910

� Item counts: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1

Surprise S = 8,110

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 29

� AMS method works for all moments

� Gives an unbiased estimate

� We will just concentrate on the 2nd moment S

� We pick and keep track of many variables X:

� For each variable X we store X.el and X.val

� X.el corresponds to the item i

� X.val corresponds to the count of item i

� Note this requires a count in main memory,

so number of Xs is limited

� Our goal is to compute � � ∑ �

�

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 30

[Alon, Matias, and Szegedy]

� How to set X.val and X.el?

� Assume stream has length n (we relax this later)

� Pick some random time t (t<n) to start,

so that any time is equally likely

� Let at time t the stream have item i. We set X.el = i

� Then we maintain count c (X.val = c) of the number

of is in the stream starting from the chosen time t

� Then the estimate of the 2nd moment (∑ �

�

) is:

� � ���� 	� 	�	�� � �	– 	��

� Note, we will keep track of multiple Xs, (X1, X2,… Xk)

and our final estimate will be � � �/�∑ �����
�
�

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 31

� 2nd moment is � � ∑ �

�

� ct … number of times item at time t appears

from time t onwards (c1=ma , c2=ma-1, c3=mb)

� � ���� �
�

�
∑ ����� � ��
�
���

�
�

�
∑ �	�� � � � � �⋯� ��
 � ��

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 32

Time t when

the last i is

seen (c
t
=1)

Time t when

the penultimate

i is seen (c
t
=2)

Time t when

the first i is

seen (c
t
=m

i
)

Group times

by the value

seen

a a a a

1 32 ma

b b b b

Count:

Stream:

mi … total count of

item i in the stream

(we are assuming

stream has length n)

� ! "�#� �
$

%
∑ &	�1 � 3 � 5 �⋯� 2+, � 1�,

� Little side calculation:	 1 � 3 � 5 �⋯� 2+, � 1 �

∑ �2- � 1�
./
,�$ � 2

./ ./0$

1
�+, � �+, �

1		

� Then � ���� �
�

�
∑ 	�	 �

�

� So, 2 3�4� � ∑ �

�

 � �

� We have the second moment (in expectation)!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 33

a a a a

1 32 ma

b b b bStream:

Count:

� For estimating kth moment we essentially use the

same algorithm but change the estimate:

� For k=2 we used n (2∙c – 1)

� For k=3 we use: n (3∙c2 – 3c + 1) (where c=X.val)

� Why?

� For k=2: Remember we had 1 � 3 � 5 �⋯� 2+, � 1

and we showed terms 2c-1 (for c=1,…,m) sum to m2

� ∑ 25 � 1.
6�$ � ∑ 51.

6�$ � ∑ 5 � 1 1 �.
6�$ +1

� So: �� � � � �� � � � � �

� For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

� Generally: Estimate � &	�57 � 5 � 1 7�

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 34

� In practice:

� Compute ���� 	� 	���	�	– 	��	for
as many variables X as you can fit in memory

� Average them in groups

� Take median of averages

� Problem: Streams never end

� We assumed there was a number n,
the number of positions in the stream

� But real streams go on forever, so n is
a variable – the number of inputs seen so far

35J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� (1) The variables X have n as a factor –
keep n separately; just hold the count in X

� (2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:

� Objective: Each starting time t is selected with
probability k/n

� Solution: (fixed-size sampling!)

� Choose the first k times for k variables

� When the nth element arrives (n > k), choose it with
probability k/n

� If you choose it, throw one of the previously stored
variables X out, with equal probability

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 36

� New Problem: Given a stream, which items

appear more than s times in the window?

� Possible solution: Think of the stream of

baskets as one binary stream per item

� 1 = item present; 0 = not present

� Use DGIM to estimate counts of 1s for all items

38J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0

N

01

12

23

4

106

� In principle, you could count frequent pairs

or even larger sets the same way

� One stream per itemset

� Drawbacks:

� Only approximate

� Number of itemsets is way too big

39J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Exponentially decaying windows: A heuristic

for selecting likely frequent item(sets)

� What are “currently” most popular movies?

� Instead of computing the raw count in last N elements

� Compute a smooth aggregation over the whole stream

� If stream is a1, a2,… and we are taking the sum

of the stream, take the answer at time t to be:

� ∑ 8
 � � �
��
�

��

� c is a constant, presumably tiny, like 10-6 or 10-9

� When new at+1 arrives:

Multiply current sum by (1-c) and add at+1
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 40

� If each ai is an “item” we can compute the

characteristic function of each possible

item x as an Exponentially Decaying Window

� That is: ∑ 9
 ⋅ � � �
��
�

��

where δi=1 if ai=x, and 0 otherwise

� Imagine that for each item x we have a binary

stream (1 if x appears, 0 if x does not appear)

� New item x arrives:

� Multiply all counts by (1-c)

� Add +1 to count for element x

� Call this sum the “weight” of item x
41J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Important property: Sum over all weights

∑ � � � �� is 1/[1 – (1 – c)] = 1/c

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 42

1/c

. . .

� What are “currently” most popular movies?

� Suppose we want to find movies of weight > ½

� Important property: Sum over all weights

∑ 1 � 5 ;; is 1/[1 – (1 – c)] = 1/c

� Thus:

� There cannot be more than 2/c movies with

weight of ½ or more

� So, 2/c is a limit on the number of

movies being counted at any time

43J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Count (some) itemsets in an E.D.W.

� What are currently “hot” itemsets?

� Problem: Too many itemsets to keep counts of

all of them in memory

� When a basket B comes in:

� Multiply all counts by (1-c)

� For uncounted items in B, create new count

� Add 1 to count of any item in B and to any itemset

contained in B that is already being counted

� Drop counts < ½

� Initiate new counts (next slide)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 44

� Start a count for an itemset S ⊆⊆⊆⊆ B if every
proper subset of S had a count prior to arrival
of basket B

� Intuitively: If all subsets of S are being counted
this means they are “frequent/hot” and thus S has
a potential to be “hot”

� Example:

� Start counting S={i, j} iff both i and j were counted
prior to seeing B

� Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k}
were all counted prior to seeing B

45J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Counts for single items < (2/c)∙(avg. number

of items in a basket)

� Counts for larger itemsets = ??

� But we are conservative about starting

counts of large sets

� If we counted every set we saw, one basket

of 20 items would initiate 1M counts

46J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

