Mining Data Streams
(Part 2)
More algorithms for streams:

1. Filtering a data stream: Bloom filters
 - Select elements with property \(x \) from stream

2. Counting distinct elements: Flajolet-Martin
 - Number of distinct elements in the last \(k \) elements of the stream

3. Estimating moments: AMS method
 - Estimate std. dev. of last \(k \) elements

4. Counting frequent items
(1) Filtering Data Streams
Each element of data stream is a tuple
Given a list of keys S
Determine which tuples of stream are in S

Obvious solution: Hash table

- But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest

First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a **bit array B** of n bits, initially all **0s**
- Choose a **hash function h** with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to **1**, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - **Output a if $B[h(a)] == 1$**
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item. It hashes to a bucket set to 0 so it is surely not in S.
First Cut Solution (3)

- $|S| = 1$ billion email addresses
 $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
More accurate analysis for the number of false positives

Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?

In our case:

- Targets = bits/buckets
- Darts = hash values of items
We have \(m \) darts, \(n \) targets.

What is the probability that a target gets at least one dart?

\[
1 - \left(1 - \frac{1}{n} \right)^n \quad \text{as} \quad n \to \infty
\]

Equals \(\frac{1}{e} \)

Probability some target \(X \) not hit by a dart

Equivalent

Probability at least one dart hits target \(X \)

\[
1 - e^{-\frac{m}{n}}
\]
Analysis: Throwing Darts (3)

- **Fraction of 1s in the array B** =
 \[
 = \text{probability of false positive} = 1 - e^{-m/n}
 \]

- **Example:** \(10^9\) darts, \(8 \cdot 10^9\) targets
 - Fraction of 1s in B = \(1 - e^{-1/8} = 0.1175\)
 - Compare with our earlier estimate: \(1/8 = 0.125\)
Consider: \(|S| = m\), \(|B| = n\)

Use \(k\) independent hash functions \(h_1, \ldots, h_k\)

Initialization:
- Set \(B\) to all 0s
- Hash each element \(s \in S\) using each hash function \(h_i\), set \(B[h_i(s)] = 1\) (for each \(i = 1, \ldots, k\))

Run-time:
- When a stream element with key \(x\) arrives
 - If \(B[h_i(x)] = 1\) for all \(i = 1, \ldots, k\) then declare that \(x\) is in \(S\)
 - That is, \(x\) hashes to a bucket set to 1 for every hash function \(h_i(x)\)
 - Otherwise discard the element \(x\)
Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing $k \cdot m$ darts at n targets
 - So fraction of 1s is $(1 - e^{-km/n})$

- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

- So, false positive probability $= (1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- \(m = 1 \) billion, \(n = 8 \) billion
 - \(k = 1: (1 - e^{-1/8}) = 0.1175 \)
 - \(k = 2: (1 - e^{-1/4})^2 = 0.0493 \)

- What happens as we keep increasing \(k \)?

- “Optimal” value of \(k \): \(n/m \ln(2) \)
 - In our case: Optimal \(k = 8 \ln(2) = 5.54 \approx 6 \)
 - Error at \(k = 6: (1 - e^{-1/6})^2 = 0.0235 \)
Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized

- Is it better to have 1 big B or k small Bs?
 - It is the same: \((1 - e^{-km/n})^k\) vs. \((1 - e^{-m/(n/k)})^k\)
 - But keeping 1 big B is simpler
(2) Counting Distinct Elements
Problem:
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far

Obvious approach:
Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) =$ position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$

- Record $R = \text{the maximum } r(a) \text{ seen}$
 - $R = \max_a r(a)$, over all the items a seen so far

- Estimated number of distinct elements $= 2^R$
Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - $h(a)$ hashes a with equal prob. to any of N values
 - Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r
Now we show why Flajolet-Martin works

Formally, we will show that probability of finding a tail of r zeros:
- Goes to 1 if $m \gg 2^r$
- Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

Thus, 2^R will almost always be around $m!$
What is the probability that a given $h(a)$ ends in at least r zeros is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r zeros is 2^{-r}

Then, the probability of NOT seeing a tail of length r among m elements:

$$\left(1 - 2^{-r}\right)^m$$

- Prob. all end in fewer than r zeros.
- Prob. that given $h(a)$ ends in fewer than r zeros
Why It Works: More formally

- **Note:** \((1 - 2^{-r})^m = (1 - 2^{-r})^{2^r (m2^{-r})} \approx e^{-m2^{-r}}\)

- **Prob. of NOT finding a tail of length** \(r\) **is:**
 - If \(m << 2^r\), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1\) as \(m/2^r \rightarrow 0\)
 - So, the probability of finding a tail of length \(r\) tends to 0
 - If \(m >> 2^r\), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0\) as \(m/2^r \rightarrow \infty\)
 - So, the probability of finding a tail of length \(r\) tends to 1

- **Thus**, \(2^R\) **will almost always be around** \(m!\)
E[2^R] is actually infinite
 - Probability halves when R → R+1, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i}?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) Computing Moments
Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values

- Let m_i be the number of times value i occurs in the stream

- The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$
Special Cases

\[\sum_{i \in A} (m_i)^k \]

- **0^{th} moment** = number of distinct elements
 - The problem just considered
- **1^{st} moment** = count of the numbers of elements = length of the stream
 - Easy to compute
- **2^{nd} moment** = *surprise number* \(S \) = a measure of how uneven the distribution is
Example: Surprise Number

- Stream of length 100
- 11 distinct values

- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

 Surprise $S = 910$

- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

 Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
How to set $X\. val$ and $X\. el$?

- Assume stream has length n (we relax this later)
- Pick some random time t ($t<n$) to start, so that any time is equally likely
- Let at time t the stream have item i. We set $X\. el = i$
- Then we maintain count c ($X\. val = c$) of the number of is in the stream starting from the chosen time t

Then the estimate of the 2nd moment ($\sum_i m_i^2$) is:

$$S = f(X) = n (2 \cdot c - 1)$$

- Note, we will keep track of multiple Xs, $(X_1, X_2, ... X_k)$ and our final estimate will be $S = 1/k \sum_j^k f(X_j)$
The 2nd moment is $S = \sum_i m_i^2$.

- c_t ... number of times item at time t appears from time t onwards ($c_1 = m_a$, $c_2 = m_a - 1$, $c_3 = m_b$).

- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$

$$= \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1 \right)$$

m_i ... total count of item i in the stream (we are assuming stream has length n).

Group times by the value seen.

- Time t when the last i is seen ($c_t = 1$).
- Time t when the penultimate i is seen ($c_t = 2$).
- Time t when the first i is seen ($c_t = m_i$).
Expectation Analysis

- \(E[f(X)] = \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1 \right) \)
 - Little side calculation: \((1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2 \)
- Then \(E[f(X)] = \frac{1}{n} \sum_i n \ (m_i)^2 \)
- So, \(E[f(X)] = \sum_i (m_i)^2 = S \)
- We have the second moment (in expectation)!

Stream:

\[
\begin{array}{cccccc}
\text{Count:} & 1 & 2 & 3 & m_a \\
\text{Stream:} & a & a & b & b & b & a & b & a
\end{array}
\]
Higher-Order Moments

- For estimating k^{th} moment we essentially use the same algorithm but change the estimate:
 - For $k=2$ we used $n \ (2 \cdot c - 1)$
 - For $k=3$ we use: $n \ (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)
- Why?
 - For $k=2$: Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,\ldots,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
 - For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$
- Generally: Estimate $= n \ (c^k - (c - 1)^k)$
In practice:
- Compute $f(X) = n(2c - 1)$ for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end
- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far
Streams Never End: Fixups

- **(1)** The variables X have n as a factor — keep n separately; just hold the count in X
- **(2)** Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - **Objective:** Each starting time t is selected with probability k/n
 - **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
Counting Itemsets
New Problem: Given a stream, which items appear more than s times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- $1 = \text{item present}; \ 0 = \text{not present}$
- Use **DGIM** to estimate counts of 1s for all items
Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset

- Drawbacks:
 - Only approximate
 - Number of itemsets is way too big
Exponentially Decaying Windows

- Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)
 - What are “currently” most popular movies?
 - Instead of computing the raw count in last \(N\) elements
 - Compute a smooth aggregation over the whole stream
 - If stream is \(a_1, a_2, \ldots\) and we are taking the sum of the stream, take the answer at time \(t\) to be:
 \[
 = \sum_{i=1}^{t} a_i (1 - c)^{t-i}
 \]
 - \(c\) is a constant, presumably tiny, like \(10^{-6}\) or \(10^{-9}\)
 - When new \(a_{t+1}\) arrives:
 Multiply current sum by \((1-c)\) and add \(a_{t+1}\)
If each a_i is an “item” we can compute the **characteristic function** of each possible item x as an Exponentially Decaying Window

- That is: $\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i}$
 where $\delta_i = 1$ if $a_i = x$, and 0 otherwise

- Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)

- New item x arrives:
 - Multiply all counts by $(1-c)$
 - Add +1 to count for element x

- **Call this sum the “weight” of item x**
Important property: Sum over all weights
\[\sum_t (1 - c)^t \text{ is } \frac{1}{[1 - (1 - c)]} = \frac{1}{c} \]
What are “currently” most popular movies?
Suppose we want to find movies of weight > ½

- **Important property:** Sum over all weights
 \[\sum_{t} (1 - c)^t \text{ is } \frac{1}{1 - (1 - c)} = \frac{1}{c} \]

- **Thus:**
 - There cannot be more than \(\frac{2}{c} \) movies with weight of \(\frac{1}{2} \) or more

- **So,** \(\frac{2}{c} \) is a limit on the number of movies being counted at any time
Count (some) itemsets in an E.D.W.

- What are currently “hot” itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory

When a basket B comes in:

- Multiply all counts by $(1-c)$
- For uncounted items in B, create new count
- Add 1 to count of any item in B and to any itemset contained in B that is already being counted
- Drop counts $< \frac{1}{2}$
- Initiate new counts (next slide)
Initiation of New Counts

- Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B
 - **Intuitively:** If all subsets of S are being counted this means they are “frequent/hot” and thus S has a potential to be “hot”
- **Example:**
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}, \{i, k\},$ and $\{j, k\}$ were all counted prior to seeing B
How many counts do we need?

- Counts for single items < \((2/c) \cdot (\text{avg. number of items in a basket}) \)
- Counts for larger itemsets = ??
- But we are conservative about starting counts of large sets
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts