
Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Note to other teachers and users of these slides: We would be delighted if you found this our

material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify

them to fit your own needs. If you make use of a significant portion of these slides in your own

lecture, please include this message, or a link to our web site: http://www.mmds.org

Supermarket shelf management – Market-basket

model:

� Goal: Identify items that are bought together by

sufficiently many customers

� Approach: Process the sales data collected with

barcode scanners to find dependencies among

items

� A classic rule:

� If someone buys diaper and milk, then he/she is

likely to buy beer

� Don’t be surprised if you find six-packs next to diapers!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 2

� A large set of items

� e.g., things sold in a
supermarket

� A large set of baskets
� Each basket is a

small subset of items

� e.g., the things one
customer buys on one day

� Want to discover
association rules

� People who bought {x,y,z} tend to buy {v,w}

� Amazon!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 3

Rules Discovered:
{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

Rules Discovered:
{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

� Items = products; Baskets = sets of products

someone bought in one trip to the store

� Real market baskets: Chain stores keep TBs of

data about what customers buy together

� Tells how typical customers navigate stores, lets

them position tempting items

� Suggests tie-in “tricks”, e.g., run sale on diapers

and raise the price of beer

� Need the rule to occur frequently, or no $$’s

� Amazon’s people who bought X also bought Y

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 4

� Baskets = sentences; Items = documents

containing those sentences

� Items that appear together too often could

represent plagiarism

� Notice items do not have to be “in” baskets

� Baskets = patients; Items = drugs & side-effects

� Has been used to detect combinations

of drugs that result in particular side-effects

� But requires extension: Absence of an item

needs to be observed as well as presence

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

� A general many-to-many mapping

(association) between two kinds of things

� But we ask about connections among “items”,

not “baskets”

� For example:

� Finding communities in graphs (e.g., Twitter)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6

� Finding communities in graphs (e.g., Twitter)

� Baskets = nodes; Items = outgoing neighbors

� Searching for complete bipartite subgraphs Ks,t of a

big graph

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

� How?

� View each node i as a

basket Bi of nodes i it points to

� Ks,t = a set Y of size t that

occurs in s buckets Bi

� Looking for Ks,t� set of

support s and look at layer t –

all frequent sets of size t

…

…

A dense 2-layer graph

s
n
o
d
e
s

t
n
o
d
e
s

First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + 2 refinements

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 8

� Simplest question: Find sets of items that

appear together “frequently” in baskets

� Support for itemset I: Number of baskets

containing all items in I

� (Often expressed as a fraction

of the total number of baskets)

� Given a support threshold s,

then sets of items that appear

in at least s baskets are called

frequent itemsets

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of

{Beer, Bread} = 2

� Items = {milk, coke, pepsi, beer, juice}

� Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

� Frequent itemsets: {m}, {c}, {b}, {j},

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

, {b,c} , {c,j}.{m,b}

11

� Association Rules:

If-then rules about the contents of baskets

� {i1, i2,…,ik} → j means: “if a basket contains

all of i1,…,ik then it is likely to contain j”

� In practice there are many rules, want to find

significant/interesting ones!

� Confidence of this association rule is the

probability of j given I = {i1,…,ik}

)support(

)support(
)conf(

I

jI
jI

∪
=→

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Not all high-confidence rules are interesting

� The rule X → milk may have high confidence for

many itemsets X, because milk is just purchased very

often (independent of X) and the confidence will be

high

� Interest of an association rule I → j:

difference between its confidence and the

fraction of baskets that contain j

� Interesting rules are those with high positive or

negative interest values (usually above 0.5)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 12

]Pr[)conf()Interest(jjIjI −→=→

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

� Association rule: {m, b} →→→→c

� Confidence = 2/4 = 0.5

� Interest = |0.5 – 5/8| = 1/8

� Item c appears in 5/8 of the baskets

� Rule is not very interesting!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 13

� Problem: Find all association rules with

support ≥≥≥≥s and confidence ≥≥≥≥c

� Note: Support of an association rule is the support

of the set of items on the left side

� Hard part: Finding the frequent itemsets!

� If {i1, i2,…, ik} → j has high support and

confidence, then both {i1, i2,…, ik} and

{i1, i2,…,ik, j} will be “frequent”

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

)support(

)support(
)conf(

I

jI
jI

∪
=→

� Step 1: Find all frequent itemsets I

� (we will explain this next)

� Step 2: Rule generation

� For every subset A of I, generate a rule A → I \ A

� Since I is frequent, A is also frequent

� Variant 1: Single pass to compute the rule confidence

� confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

� Variant 2:

� Observation: If A,B,C→D is below confidence, so is A,B→C,D

� Can generate “bigger” rules from smaller ones!

� Output the rules above the confidence threshold

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

� Support threshold s = 3, confidence c = 0.75
� 1) Frequent itemsets:

� {b,m} {b,c} {c,m} {c,j} {m,c,b}

� 2) Generate rules:

� b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5

� m→b: c=4/5 … b,m→c: c=3/4

� b→c,m: c=3/6

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 16

� To reduce the number of rules we can

post-process them and only output:

� Maximal frequent itemsets:

No immediate superset is frequent

� Gives more pruning

or

� Closed itemsets:

No immediate superset has the same count (> 0)

� Stores not only frequent information, but exact counts

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 17

Support Maximal(s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 18

Frequent, but

superset BC

also frequent.

Frequent, and

its only superset,

ABC, not freq.

Superset BC

has same count.

Its only super-

set, ABC, has

smaller count.

� Back to finding frequent itemsets
� Typically, data is kept in flat files

rather than in a database system:

� Stored on disk

� Stored basket-by-basket

� Baskets are small but we have
many baskets and many items

� Expand baskets into pairs, triples, etc.
as you read baskets

� Use k nested loops to generate all
sets of size k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,

and boundaries between

baskets are –1.
Note: We want to find frequent itemsets. To find them, we

have to count them. To count them, we have to generate them.

21

� The true cost of mining disk-resident data is

usually the number of disk I/Os

� In practice, association-rule algorithms read

the data in passes – all baskets read in turn

� We measure the cost by the number of

passes an algorithm makes over the data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

22

� For many frequent-itemset algorithms,

main-memory is the critical resource

� As we read baskets, we need to count

something, e.g., occurrences of pairs of items

� The number of different things we can count

is limited by main memory

� Swapping counts in/out is a disaster (why?)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� The hardest problem often turns out to be

finding the frequent pairs of items {i1, i2}

� Why? Freq. pairs are common, freq. triples are rare

� Why? Probability of being frequent drops exponentially

with size; number of sets grows more slowly with size

� Let’s first concentrate on pairs, then extend to

larger sets

� The approach:

� We always need to generate all the itemsets

� But we would only like to count (keep track) of those

itemsets that in the end turn out to be frequent
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23

� Naïve approach to finding frequent pairs

� Read file once, counting in main memory

the occurrences of each pair:

� From each basket of n items, generate its

n(n-1)/2 pairs by two nested loops

� Fails if (#items)2 exceeds main memory

� Remember: #items can be

100K (Wal-Mart) or 10B (Web pages)

� Suppose 105 items, counts are 4-byte integers

� Number of pairs of items: 105(105-1)/2 = 5*109

� Therefore, 2*1010 (20 gigabytes) of memory needed

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

Two approaches:
� Approach 1: Count all pairs using a matrix
� Approach 2: Keep a table of triples [i, j, c] =

“the count of the pair of items {i, j} is c.”

� If integers and item ids are 4 bytes, we need
approximately 12 bytes for pairs with count > 0

� Plus some additional overhead for the hashtable

Note:
� Approach 1 only requires 4 bytes per pair
� Approach 2 uses 12 bytes per pair

(but only for pairs with count > 0)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 26

4 bytes per pair

Triangular Matrix Triples

12 per

occurring pair

� Approach 1: Triangular Matrix

� n = total number items

� Count pair of items {i, j} only if i<j

� Keep pair counts in lexicographic order:

� {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

� Pair {i, j} is at position (i –1)(n– i/2) + j –1

� Total number of pairs n(n –1)/2; total bytes= 2n2

� Triangular Matrix requires 4 bytes per pair

� Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)

� Beats Approach 1 if less than 1/3 of
possible pairs actually occur

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 27

� Approach 1: Triangular Matrix

� n = total number items

� Count pair of items {i, j} only if i<j

� Keep pair counts in lexicographic order:

� {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

� Pair {i, j} is at position (i –1)(n– i/2) + j –1

� Total number of pairs n(n –1)/2; total bytes= 2n2

� Triangular Matrix requires 4 bytes per pair

� Approach 2 uses 12 bytes per pair
(but only for pairs with count > 0)

� Beats Approach 1 if less than 1/3 of
possible pairs actually occur

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28

Problem is if we have too

many items so the pairs

do not fit into memory.

Can we do better?

� A two-pass approach called

A-Priori limits the need for

main memory

� Key idea: monotonicity

� If a set of items I appears at

least s times, so does every subset J of I

� Contrapositive for pairs:

If item i does not appear in s baskets, then no

pair including i can appear in s baskets

� So, how does A-Priori find freq. pairs?
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 30

� Pass 1: Read baskets and count in main memory
the occurrences of each individual item

� Requires only memory proportional to #items

� Items that appear � � times are the frequent items

� Pass 2: Read baskets again and count in main
memory only those pairs where both elements
are frequent (from Pass 1)

� Requires memory proportional to square of frequent
items only (for counts)

� Plus a list of the frequent items (so you know what must
be counted)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 31

32

Item counts

Pass 1 Pass 2

Frequent items

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

M
a
in

 m
e
m

o
ry Counts of

pairs of

frequent items

(candidate

pairs)

� You can use the
triangular matrix
method with n = number
of frequent items

� May save space compared
with storing triples

� Trick: re-number
frequent items 1,2,…
and keep a table relating
new numbers to original
item numbers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 33

Item counts

Pass 1 Pass 2

Counts of pairs

of frequent

items

Frequent

items

Old

item

#s

M
a
in

 m
e
m

o
ry

Counts of

pairs of

frequent items

34

� For each k, we construct two sets of

k-tuples (sets of size k):

� Ck = candidate k-tuples = those that might be

frequent sets (support > s) based on information

from the pass for k–1

� Lk = the set of truly frequent k-tuples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of items

from L1

Count

the pairs
To be

explained

Count

the items

� Hypothetical steps of the A-Priori algorithm

� C1 = { {b} {c} {j} {m} {n} {p} }

� Count the support of itemsets in C1

� Prune non-frequent: L1 = { b, c, j, m }

� Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

� Count the support of itemsets in C2

� Prune non-frequent: L2 = { {b,m} {b,c} {c,m} {c,j} }

� Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

� Count the support of itemsets in C3

� Prune non-frequent: L3 = { {b,c,m} }

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 35

** Note here we generate new candidates by
generating Ck from Lk-1 and L1.
But that one can be more careful with candidate
generation. For example, in C3 we know {b,m,j}
cannot be frequent since {m,j} is not frequent

**

� One pass for each k (itemset size)
� Needs room in main memory to count

each candidate k–tuple
� For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most memory

� Many possible extensions:

� Association rules with intervals:

� For example: Men over 65 have 2 cars

� Association rules when items are in a taxonomy

� Bread, Butter → FruitJam

� BakedGoods, MilkProduct→ PreservedGoods

� Lower the support s as itemset gets bigger
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 36

� Observation:
In pass 1 of A-Priori, most memory is idle

� We store only individual item counts

� Can we use the idle memory to reduce
memory required in pass 2?

� Pass 1 of PCY: In addition to item counts,
maintain a hash table with as many
buckets as fit in memory
� Keep a count for each bucket into which

pairs of items are hashed
� For each bucket just keep the count, not the actual

pairs that hash to the bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 38

FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

� Few things to note:

� Pairs of items need to be generated from the input

file; they are not present in the file

� We are not just interested in the presence of a pair,

but we need to see whether it is present at least s

(support) times
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 39

New

in

PCY

� Observation: If a bucket contains a frequent pair,
then the bucket is surely frequent

� However, even without any frequent pair,
a bucket can still be frequent �

� So, we cannot use the hash to eliminate any
member (pair) of a “frequent” bucket

� But, for a bucket with total count less than s,
none of its pairs can be frequent ☺☺☺☺

� Pairs that hash to this bucket can be eliminated as
candidates (even if the pair consists of 2 frequent items)

� Pass 2:
Only count pairs that hash to frequent buckets

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 40

� Replace the buckets by a bit-vector:

� 1 means the bucket count exceeded the support s

(call it a frequent bucket); 0 means it did not

� 4-byte integer counts are replaced by bits,

so the bit-vector requires 1/32 of memory

� Also, decide which items are frequent

and list them for the second pass

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 41

42

� Count all pairs {i, j} that meet the

conditions for being a candidate pair:

1. Both i and j are frequent items

2. The pair {i, j} hashes to a bucket whose bit in

the bit vector is 1 (i.e., a frequent bucket)

� Both conditions are necessary for the

pair to have a chance of being frequent

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

43

Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hash table

for pairs

M
a
in

 m
e
m

o
ry

Counts of

candidate

pairs

44

� Buckets require a few bytes each:

� Note: we do not have to count past s

� #buckets is O(main-memory size)

� On second pass, a table of (item, item, count)

triples is essential (we cannot use triangular

matrix approach, why?)

� Thus, hash table must eliminate approx. 2/3

of the candidate pairs for PCY to beat A-Priori

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� Limit the number of candidates to be counted

� Remember: Memory is the bottleneck

� Still need to generate all the itemsets but we only

want to count/keep track of the ones that are frequent

� Key idea: After Pass 1 of PCY, rehash only those

pairs that qualify for Pass 2 of PCY

� i and j are frequent, and

� {i, j} hashes to a frequent bucket from Pass 1

� On middle pass, fewer pairs contribute to

buckets, so fewer false positives

� Requires 3 passes over the data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 45

46

First

hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of

candidate

pairs

Pass 1 Pass 2 Pass 3

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Count items

Hash pairs {i,j}

Hash pairs {i,j}

into Hash2 iff:

i,j are frequent,

{i,j} hashes to

freq. bucket in B1

Count pairs {i,j} iff:

i,j are frequent,

{i,j} hashes to

freq. bucket in B1

{i,j} hashes to

freq. bucket in B2

First

hash table
Second

hash table
Counts of

candidate

pairs

M
a
in

 m
e
m

o
ry

� Count only those pairs {i, j} that satisfy these

candidate pair conditions:

1. Both i and j are frequent items

2. Using the first hash function, the pair hashes to

a bucket whose bit in the first bit-vector is 1

3. Using the second hash function, the pair hashes to

a bucket whose bit in the second bit-vector is 1

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 47

1. The two hash functions have to be

independent

2. We need to check both hashes on the

third pass

� If not, we would end up counting pairs of

frequent items that hashed first to an

infrequent bucket but happened to hash

second to a frequent bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 48

� Key idea: Use several independent hash

tables on the first pass

� Risk: Halving the number of buckets doubles

the average count

� We have to be sure most buckets will still not

reach count s

� If so, we can get a benefit like multistage,

but in only 2 passes

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 49

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 50

First hash

table

Second

hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of

candidate

pairs

Pass 1 Pass 2

First

hash table

Second

hash table

Counts of

candidate

pairs

M
a
in

 m
e
m

o
ry

� Either multistage or multihash can use more

than two hash functions

� In multistage, there is a point of diminishing

returns, since the bit-vectors eventually

consume all of main memory

� For multihash, the bit-vectors occupy exactly

what one PCY bitmap does, but too many

hash functions makes all counts > s

51J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� A-Priori, PCY, etc., take k passes to find

frequent itemsets of size k

� Can we use fewer passes?

� Use 2 or fewer passes for all sizes,

but may miss some frequent itemsets

� Random sampling

� SON (Savasere, Omiecinski, and Navathe)

� Toivonen (see textbook)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 53

� Take a random sample of the market baskets

� Run a-priori or one of its improvements

in main memory

� So we don’t pay for disk I/O each

time we increase the size of itemsets

� Reduce support threshold

proportionally

to match the sample size

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 54

Copy of

sample

baskets

Space

for

counts

M
a
in

 m
e
m

o
ry

� Optionally, verify that the candidate pairs are

truly frequent in the entire data set by a

second pass (avoid false positives)

� But you don’t catch sets frequent in the whole

but not in the sample

� Smaller threshold, e.g., s/125, helps catch more

truly frequent itemsets

� But requires more space

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 55

56

� Repeatedly read small subsets of the baskets

into main memory and run an in-memory

algorithm to find all frequent itemsets

� Note: we are not sampling, but processing the

entire file in memory-sized chunks

� An itemset becomes a candidate if it is found

to be frequent in any one or more subsets of

the baskets.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

57

� On a second pass, count all the candidate

itemsets and determine which are frequent in

the entire set

� Key “monotonicity” idea: an itemset cannot

be frequent in the entire set of baskets unless

it is frequent in at least one subset.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

� SON lends itself to distributed data mining

� Baskets distributed among many nodes

� Compute frequent itemsets at each node

� Distribute candidates to all nodes

� Accumulate the counts of all candidates

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 58

� Phase 1: Find candidate itemsets

� Map?

� Reduce?

� Phase 2: Find true frequent itemsets

� Map?

� Reduce?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 59

