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Supermarket shelf management – Market-basket 

model:

� Goal: Identify items that are bought together by 

sufficiently many customers

� Approach: Process the sales data collected with 

barcode scanners to find dependencies among 

items

� A classic rule:

� If someone buys diaper and milk, then he/she is 

likely to buy beer

� Don’t be surprised if you find six-packs next to diapers!
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� A large set of items

� e.g., things sold in a 
supermarket

� A large set of baskets
� Each basket is a 

small subset of items

� e.g., the things one 
customer buys on one day

� Want to discover 
association rules

� People who bought {x,y,z} tend to buy {v,w}

� Amazon!
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Rules Discovered:
{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

Rules Discovered:
{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Input:

Output:



� Items = products; Baskets = sets of products 

someone bought in one trip to the store

� Real market baskets: Chain stores keep TBs of 

data about what customers buy together

� Tells how typical customers navigate stores, lets 

them position tempting items

� Suggests tie-in “tricks”, e.g., run sale on diapers 

and raise the price of beer

� Need the rule to occur frequently, or no $$’s

� Amazon’s people who bought X also bought Y
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� Baskets = sentences; Items = documents 

containing those sentences

� Items that appear together too often could 

represent plagiarism

� Notice items do not have to be “in” baskets

� Baskets = patients; Items = drugs & side-effects

� Has been used to detect combinations 

of drugs that result in particular side-effects

� But requires extension: Absence of an item 

needs to be observed as well as presence
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� A general many-to-many mapping 

(association) between two kinds of things

� But we ask about connections among “items”, 

not “baskets”

� For example:

� Finding communities in graphs (e.g., Twitter)
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� Finding communities in graphs (e.g., Twitter)

� Baskets = nodes; Items = outgoing neighbors

� Searching for complete bipartite subgraphs Ks,t of a 

big graph
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� How?

� View each node i as a 

basket Bi of nodes i it points to

� Ks,t = a set Y of size t that 

occurs in s buckets Bi

� Looking for Ks,t� set of 

support s and look at layer t –

all frequent sets of size t

…

…

A dense 2-layer graph
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First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + 2 refinements
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� Simplest question: Find sets of items that 

appear together “frequently” in baskets

� Support for itemset I: Number of baskets 

containing all items in I

� (Often expressed as a fraction 

of the total number of baskets)

� Given a support threshold s, 

then sets of items that appear 

in at least s baskets are called 

frequent itemsets
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of 

{Beer, Bread} = 2



� Items = {milk, coke, pepsi, beer, juice}

� Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

� Frequent itemsets: {m}, {c}, {b}, {j},
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, {b,c} , {c,j}.{m,b}
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� Association Rules:

If-then rules about the contents of baskets

� {i1, i2,…,ik} → j means: “if a basket contains 

all of i1,…,ik then it is likely to contain j”

� In practice there are many rules, want to find 

significant/interesting ones!

� Confidence of this association rule is the 

probability of j given I = {i1,…,ik}

)support(

)support(
)conf(

I

jI
jI

∪
=→
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� Not all high-confidence rules are interesting

� The rule X → milk may have high confidence for 

many itemsets X, because milk is just purchased very 

often (independent of X) and the confidence will be 

high

� Interest of an association rule I → j: 

difference between its confidence and the 

fraction of baskets that contain j

� Interesting rules are those with high positive or 

negative interest values (usually above 0.5)
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B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

� Association rule: {m, b} →→→→c

� Confidence = 2/4 = 0.5

� Interest = |0.5 – 5/8| = 1/8

� Item c appears in 5/8 of the baskets

� Rule is not very interesting!
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� Problem: Find all association rules with 

support ≥≥≥≥s and confidence ≥≥≥≥c

� Note: Support of an association rule is the support 

of the set of items on the left side

� Hard part: Finding the frequent itemsets!

� If {i1, i2,…, ik} → j has high support and 

confidence, then both {i1, i2,…, ik} and

{i1, i2,…,ik, j} will be “frequent”
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� Step 1: Find all frequent itemsets I

� (we will explain this next)

� Step 2: Rule generation

� For every subset A of I,  generate a rule A → I \ A

� Since I is frequent, A is also frequent

� Variant 1: Single pass to compute the rule confidence

� confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

� Variant 2:

� Observation: If A,B,C→D is below confidence, so is A,B→C,D

� Can generate “bigger” rules from smaller ones! 

� Output the rules above the confidence threshold

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15



B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

� Support threshold s = 3, confidence c = 0.75
� 1) Frequent itemsets:

� {b,m}  {b,c}  {c,m}  {c,j}  {m,c,b}

� 2) Generate rules:

� b→m: c=4/6 b→c: c=5/6        b,c→m: c=3/5

� m→b: c=4/5 …                   b,m→c: c=3/4

� b→c,m: c=3/6
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� To reduce the number of rules we can 

post-process them and only output:

� Maximal frequent itemsets: 

No immediate superset is frequent

� Gives more pruning

or

� Closed itemsets:

No immediate superset has the same count (> 0)

� Stores not only frequent information, but exact counts
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Support Maximal(s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes
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Frequent, but

superset BC

also frequent.

Frequent, and

its only superset,

ABC, not freq.

Superset BC

has same count.

Its only super-

set, ABC, has

smaller count.





� Back to finding frequent itemsets
� Typically, data is kept in flat files 

rather than in a database system:

� Stored on disk

� Stored basket-by-basket

� Baskets are small but we have 
many baskets and many items

� Expand baskets into pairs, triples, etc. 
as you read baskets

� Use k nested loops to generate all 
sets of size k
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Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers, 

and boundaries between 

baskets are –1.
Note: We want to find frequent itemsets. To find them, we 

have to count them. To count them, we have to generate them.
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� The true cost of mining disk-resident data is 

usually the number of disk I/Os

� In practice, association-rule algorithms read 

the data in passes – all baskets read in turn

� We measure the cost by the number of 

passes an algorithm makes over the data
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� For many frequent-itemset algorithms, 

main-memory is the critical resource

� As we read baskets, we need to count 

something, e.g., occurrences of pairs of items

� The number of different things we can count 

is limited by main memory

� Swapping counts in/out is a disaster (why?)
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� The hardest problem often turns out to be 

finding the frequent pairs of items {i1, i2}

� Why? Freq. pairs are common, freq. triples are rare

� Why? Probability of being frequent drops exponentially 

with size; number of sets grows more slowly with size

� Let’s first concentrate on pairs, then extend to 

larger sets

� The approach:

� We always need to generate all the itemsets

� But we would only like to count (keep track) of those 

itemsets that in the end turn out to be frequent
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� Naïve approach to finding frequent pairs

� Read file once, counting in main memory 

the occurrences of each pair:

� From each basket of n items, generate its 

n(n-1)/2 pairs by two nested loops

� Fails if (#items)2 exceeds main memory

� Remember: #items can be 

100K (Wal-Mart) or 10B (Web pages)

� Suppose 105 items, counts are 4-byte integers

� Number of pairs of items: 105(105-1)/2 = 5*109

� Therefore, 2*1010 (20 gigabytes) of memory needed
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Two approaches:
� Approach 1: Count all pairs using a matrix
� Approach 2: Keep a table of triples [i, j, c] = 

“the count of the pair of items {i, j} is c.”

� If integers and item ids are 4 bytes, we need 
approximately 12 bytes for pairs with count > 0

� Plus some additional overhead for the hashtable

Note:
� Approach 1 only requires 4 bytes per pair
� Approach 2 uses 12 bytes per pair 

(but only for pairs with count > 0)
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4 bytes per pair

Triangular Matrix Triples

12 per

occurring pair



� Approach 1: Triangular Matrix

� n = total number items

� Count pair of items {i, j} only if i<j

� Keep pair counts in lexicographic order:

� {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

� Pair {i, j} is at position (i –1)(n– i/2) + j –1

� Total number of pairs n(n –1)/2; total bytes= 2n2

� Triangular Matrix requires 4 bytes per pair

� Approach 2 uses 12 bytes per occurring pair 
(but only for pairs with count > 0)

� Beats Approach 1 if less than 1/3 of 
possible pairs actually occur
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� Approach 1: Triangular Matrix

� n = total number items

� Count pair of items {i, j} only if i<j

� Keep pair counts in lexicographic order:

� {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

� Pair {i, j} is at position (i –1)(n– i/2) + j –1

� Total number of pairs n(n –1)/2; total bytes= 2n2

� Triangular Matrix requires 4 bytes per pair

� Approach 2 uses 12 bytes per pair 
(but only for pairs with count > 0)

� Beats Approach 1 if less than 1/3 of 
possible pairs actually occur
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Problem is if we have too 

many items so the pairs 

do not fit into memory.

Can we do better?





� A two-pass approach called 

A-Priori limits the need for 

main memory

� Key idea: monotonicity

� If a set of items I appears at 

least s times, so does every subset J of I

� Contrapositive for pairs:

If item i does not appear in s baskets, then no 

pair including i can appear in s baskets

� So, how does A-Priori find freq. pairs?
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� Pass 1: Read baskets and count in main memory 
the occurrences of each individual item

� Requires only memory proportional to #items

� Items that appear � � times are the frequent items

� Pass 2: Read baskets again and count in main 
memory only those pairs where both elements 
are frequent (from Pass 1)

� Requires memory proportional to square of frequent
items only (for counts)

� Plus a list of the frequent items (so you know what must 
be counted)
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Item counts

Pass 1 Pass 2

Frequent items
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� You can use the 
triangular matrix 
method with n = number 
of frequent items

� May save space compared 
with storing triples

� Trick: re-number 
frequent items 1,2,… 
and keep a table relating 
new numbers to original 
item numbers
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Item counts

Pass 1 Pass 2

Counts of pairs 

of frequent 

items

Frequent 

items

Old

item

#s

M
a
in

 m
e
m

o
ry

Counts of 

pairs of 
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� For each k, we construct two sets of

k-tuples (sets of size k):

� Ck = candidate k-tuples = those that might be 

frequent sets (support > s) based on information 

from the pass for k–1

� Lk = the set of truly frequent k-tuples
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C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of items

from L1

Count

the pairs
To be

explained

Count

the items



� Hypothetical steps of the A-Priori algorithm

� C1 = { {b} {c} {j} {m} {n} {p} }

� Count the support of itemsets in C1

� Prune non-frequent: L1 = { b, c, j, m }

� Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

� Count the support of itemsets in C2

� Prune non-frequent: L2 = { {b,m} {b,c}  {c,m}  {c,j} }

� Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

� Count the support of itemsets in C3

� Prune non-frequent: L3 = { {b,c,m} }
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** Note here we generate new candidates by 
generating Ck from Lk-1 and L1.
But that one can be more careful with candidate 
generation. For example, in C3 we know {b,m,j} 
cannot be frequent since {m,j} is not frequent

**



� One pass for each k (itemset size)
� Needs room in main memory to count 

each candidate k–tuple
� For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most memory

� Many possible extensions:

� Association rules with intervals: 

� For example: Men over 65 have 2 cars

� Association rules when items are in a taxonomy

� Bread, Butter → FruitJam

� BakedGoods, MilkProduct→ PreservedGoods

� Lower the support s as itemset gets bigger
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� Observation: 
In pass 1 of A-Priori, most memory is idle

� We store only individual item counts

� Can we use the idle memory to reduce 
memory required in pass 2?

� Pass 1 of PCY: In addition to item counts, 
maintain a hash table with as many 
buckets as fit in memory 
� Keep a count for each bucket into which 

pairs of items are hashed
� For each bucket just keep the count, not the actual 

pairs that hash to the bucket!
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FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

� Few things to note:

� Pairs of items need to be generated from the input 

file; they are not present in the file

� We are not just interested in the presence of a pair, 

but we need to see whether it is present at least s

(support) times
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New 

in 

PCY



� Observation: If a bucket contains a frequent pair, 
then the bucket is surely frequent

� However, even without any frequent pair, 
a bucket can still be frequent �

� So, we cannot use the hash to eliminate any 
member (pair) of a “frequent” bucket

� But, for a bucket with total count less than s, 
none of its pairs can be frequent ☺☺☺☺

� Pairs that hash to this bucket can be eliminated as 
candidates (even if the pair consists of 2 frequent items)

� Pass 2:
Only count pairs that hash to frequent buckets
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� Replace the buckets by a bit-vector:

� 1 means the bucket count exceeded the support s

(call it a frequent bucket); 0 means it did not

� 4-byte integer counts are replaced by bits, 

so the bit-vector requires 1/32 of memory

� Also, decide which items are frequent 

and list them for the second pass
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� Count all pairs {i, j} that meet the 

conditions for being a candidate pair:

1. Both i and j are frequent items

2. The pair {i, j} hashes to a bucket whose bit in 

the bit vector is 1 (i.e., a frequent bucket)

� Both conditions are necessary for the 

pair to have a chance of being frequent
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Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items
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� Buckets require a few bytes each:

� Note: we do not have to count past s

� #buckets is O(main-memory size)

� On second pass, a table of (item, item, count) 

triples is essential (we cannot use triangular 

matrix approach, why?)

� Thus, hash table must eliminate approx. 2/3 

of the candidate pairs for PCY to beat A-Priori
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� Limit the number of candidates to be counted

� Remember: Memory is the bottleneck

� Still need to generate all the itemsets but we only 

want to count/keep track of the ones that are frequent

� Key idea: After Pass 1 of PCY, rehash only those 

pairs that qualify for Pass 2 of PCY

� i and j are frequent, and 

� {i, j} hashes to a frequent bucket from Pass 1

� On middle pass, fewer pairs contribute to 

buckets, so fewer false positives

� Requires 3 passes over the data
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First

hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of

candidate

pairs

Pass 1 Pass 2 Pass 3
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Hash pairs {i,j}

Hash pairs {i,j}

into Hash2 iff:
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{i,j} hashes to

freq. bucket in B1

Count pairs {i,j} iff:

i,j are frequent,
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freq. bucket in B1

{i,j} hashes to
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� Count only those pairs {i, j} that satisfy these 

candidate pair conditions:

1. Both i and j are frequent items

2. Using the first hash function, the pair hashes to 

a bucket whose bit in the first bit-vector is 1

3. Using the second hash function, the pair hashes to 

a bucket whose bit in the second bit-vector is 1
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1. The two hash functions have to be 

independent

2. We need to check both hashes on the 

third pass

� If not, we would end up counting pairs of 

frequent items that hashed first to an 

infrequent bucket but happened to hash 

second to a frequent bucket
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� Key idea: Use several independent hash 

tables on the first pass

� Risk: Halving the number of buckets doubles 

the average count

� We have to be sure most buckets will still not 

reach count s

� If so, we can get a benefit like multistage, 

but in only 2 passes
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� Either multistage or multihash can use more 

than two hash functions

� In multistage, there is a point of diminishing 

returns, since the bit-vectors eventually 

consume all of main memory

� For multihash, the bit-vectors occupy exactly 

what one PCY bitmap does, but too many 

hash functions makes all counts > s
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� A-Priori, PCY, etc., take k passes to find 

frequent itemsets of size k

� Can we use fewer passes?

� Use 2 or fewer passes for all sizes, 

but may miss some frequent itemsets

� Random sampling

� SON (Savasere, Omiecinski, and Navathe)

� Toivonen (see textbook)
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� Take a random sample of the market baskets

� Run a-priori or one of its improvements

in main memory

� So we don’t pay for disk I/O each 

time we increase the size of itemsets

� Reduce support threshold 

proportionally 

to match the sample size
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� Optionally, verify that the candidate pairs are 

truly frequent in the entire data set by a 

second pass (avoid false positives)

� But you don’t catch sets frequent in the whole 

but not in the sample

� Smaller threshold, e.g., s/125, helps catch more 

truly frequent itemsets

� But requires more space
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� Repeatedly read small subsets of the baskets 

into main memory and run an in-memory 

algorithm to find all frequent itemsets

� Note: we are not sampling, but processing the 

entire file in memory-sized chunks

� An itemset becomes a candidate if it is found 

to be frequent in any one or more subsets of 

the baskets.
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� On a second pass, count all the candidate 

itemsets and determine which are frequent in 

the entire set

� Key “monotonicity” idea: an itemset cannot 

be frequent in the entire set of baskets unless 

it is frequent in at least one subset.
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� SON lends itself to distributed data mining 

� Baskets distributed among many nodes 

� Compute frequent itemsets at each node

� Distribute candidates to all nodes

� Accumulate the counts of all candidates
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� Phase 1: Find candidate itemsets

� Map?

� Reduce?

� Phase 2: Find true frequent itemsets

� Map?

� Reduce?
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