Note to other teachers and users of these slides: We would be delighted if you found this our
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site:

Frequent Itemset Mining &
Association Rules

IIIIIII# #

Association Rule Discovery

The Market-Basket Model

TID ltems
! I 1 Bread, Coke, Milk
2 Beer, Bread
$ 3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
+ 5 Coke, Diaper, Milk

|1
Rules Discovered:

Applications — (1)

1 2 1

Applications - (2)

1 2 1
9 # 7 8

1 2 1 =
>

H $

More generally

$ 9
0% & 1 1
5 /7 8
/7 8

@ All 4 B

| (O &

1 2 1
6
+ |
E |
) B, i
g 3 1 Y t
o . S B,
%8 S tF

" slwe ()) # (1 D

Outline

Frequent ltemsets

’ @

AH

| #

" # $l%& ' ())

TID

ltems
Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diaper, Milk

Beer, Bread, Diaper, Milk

gl | W[N -~

Coke, Diaper, Milk

Support of
{Beer, Bread} =2

Example: Frequent Itemsets

Association Rules

j # 1 ={i,....I}
conf(l ® j):support(l E)
support(l)

" H $l%& U ())

Interesting Association Rules

<

4 X milk #
X & #
A XB

|
Interest{ ®) =conf(l ® |)- Pr||]
#
A # LI1?7B

" $tw& ()) # (1

@?
) ? 2:>))é?
:>) y " .
4 , _ ?
6:>;;@? 0=">)
=>
8 .
=*<]1LI?
| 1KG
| =ML!? F? GM
- ?G

% #

KO
H 0, 8L H |
" $' A)

U I I

{11, Ipy.ey I}
{11, oy isly |} /7 : 8

support{ E j)
support()

K
Lo
" # $l%& ' ()) # (!

confl ® |)=

3 @ : |

A B
2
@ # A A |\A
6 I : A ;
A 3 6
confidence(A,B C,D) = support(A,B,C,D) / support(A,B)
A 2
B C I -)))-
3 7 8
B C

" # $l%& ' ()) # (1 K?

3=>)) 7? ,=>)) @7
1=>))) 7 5= >) @7
6=>)) 7 7=>))) @7
g=>)) @7? 9=>) 7
s=3 c =0.75
3& " "
>)? >)? >)? >)@? >))?
2&
(el<C (cl? C 3 (c102
(cl< ? N) (cl0 <

11

9 AO LB

" # $l%& ' ()) # (1 KD

0

o

+ | | #
ltems are positive integers,
Note: We want to find frequent itemsets. To find them, we and boundaries between
have to count them. To count them, we have to generate them. baskets are 1.

" # $l%& ' ()) # (1 *L

" # $l%& ' ()) # (1 *K

" # $l%& ' ()) # (1

) {I, 1o}
D$, @ :! | |
D $,

*0
(1
" slwe ()) #

<FC :
%
(
@
! %0G & 2 # $
R
KLLS A,) B KL5A, B
6 KL 7 <
9 (KL AKEKB * 1 ?TKL

4 *TKL KEA*L B

" # $l%& ' ()) # (1

*|

N W

N W

OLB

OL

18

Vi1

O
O
O
o O
O
0
0(e 0
o © O
Triangular Matrix Triples

" # $l%& ' ()) # (1 *C

1
- / W
(
-K*/ -KO/N -K/ -*0/ *</N-* [-0</N
- AFKBA *BX F
% 3&:22 1
e <
2 321
$ K 3:4

" # $l%& ' ()) # (1

22

H$
I
S # J |
/ C
i S
| S

% : R
2 %
A KB
% :
A B
A
B

" # $l%& ' ()) # (1 0K

Main memory

Item counts

Frequent items

Counts of
pairs of
frequent items
(candidate
pairs)

Pass 1

" # $1%& I

0

Pass 2

1 Item counts

K*N

Main memory

Old
item
#S

Frequent
items

Counts of
pairs of
frequent items

Pass 1

" # $l%& ' ()) # (1

Pass 2

00

1 1
A 1 B
3
$1
All pairs
Count P Count

| All the items of items the pairS exT?a?need
items from L, g

j / / /

C, Filter L,— Construct — C,— Filter L, — Construct — C,

" # $l%& ' ()) # (1 0<

+$.
31--/-1-&-1-1-11
3 3

(" <1-

*1"
3 3

(" *1-- /-
&/ -

01" /'

[- & -

** Note here we generate new candidates by
generating C, from L, ; and L,.

But that one can be more careful with candidate
generation. For example, in C; we know {b,m,j}
cannot be frequent since {m,j} is not frequent

K

& /
[- & -
| -
&/ -

[-& []

[- &'
&'/

3 3

**

0

(" 1-- /1

" # $l%& ' ())

(1 0?

H A B
9

F
@
All KYB =2
$ #
$ #(
@ () # C? #*
$
5 5 @

5 1) # |

0

FOR (each basket) :

FOR (each item in the basket) :
add 1 to item’s count;

FOR (each pair of items)

New
in 1 hash the pair to a bucket;
PCY | add 1 to the count for that bucket;

" # $l%& ' ()) # (1 0J

B C ")
$ 1]

A# *o B

C 3142 $

Main memory

Item counts

Frequent items

Hash table
for pairs

Bitmap

Counts of
candidate
pairs

Pass 1

" # $1%& I

0

Pass 2

<0

< H# S
R
H A B
A
B
4 1*0
3P $

" slwe ()) # (1

Main memory

ltem counts Freq. items
Bitmap 1
First
Second
hash table Hooh table
Pass 1 Pass 2
Hash pairs {i,j}
Count items into Hash?2 iff:

Hash pairs {i,j}

" # $%&

freq. bucket in B1

N

I,j are frequent,

{i,j} hashes to

0O) #

(

!

Freq. items

Bitmap 1

Bitmap 2

Counts of
candidate
pairs

Pass 3
Count pairs {i,j} iff:
I,] are frequent,
{i,j} hashes to
freq. bucket in B1
{i,j} hashes to
freq. bucket in B2

! <C

/ $ {1,]} $

" # $l%& ' ()) # (1 <G

" # $l%& ' ()) # (1 <J

Main memory

Item counts

Freq. items

First
hash table

N

Second
hash table

Bitmap 1

Bitmap 2

Counts of
candidate
pairs

Pass 1

F+

" $%& ' ())

Pass 2

%
6HI9 A6 #
4 # A

" # $1%&

0

%

%

" # $1%&

N

0

Main memory

Copy of
sample
baskets

Space
for
counts

?<

A# # B

6 I K*?

%

9 (

2C
(1

#

$twe 1 ())

" # $1%

H$K $L

6H9

" slwe ()) # (1 2G

' 1%& 1 ()

