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Nodes: Football Teams

Edges: Games played

Can we identify 

node groups?

(communities, 

modules, clusters)
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NCAA conferences

Nodes: Football Teams

Edges: Games played
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Can we identify 

functional modules?

Nodes: Proteins

Edges: Physical interactions
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Functional modules

Nodes: Proteins

Edges: Physical interactions
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Can we identify 

social communities?

Nodes: Facebook Users

Edges: Friendships
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High school Summer
internship

Stanford (Squash)

Stanford (Basketball)

Social communities

Nodes: Facebook Users

Edges: Friendships
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� Non-overlapping vs. overlapping  communities
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Network Adjacency matrix

Nodes

N
o

d
e

s
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� What is the structure of community overlaps:

Edge density in the overlaps is higher!
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Communities as “tiles”
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This is what we want!Communities

in a network
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� 1) Given a model, we generate the network:

� 2) Given a network, find the “best” model
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� Goal: Define a model that can generate 

networks

� The model will have a set of “parameters” that we 

will later want to estimate (and detect communities)

� Q: Given a set of nodes, how do communities 

“generate” edges of the network?
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� Generative model B(V, C, M, {pc}) for graphs:

� Nodes V, Communities C, Memberships M

� Each community c has a single probability pc

� Later we fit the model to networks to detect 

communities
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Model

Network

Communities, C

Nodes, V

Model

pA pB

Memberships, M
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� AGM generates the links: For each 

� For each pair of nodes in community �, 
we connect them with prob. ��

� The overall edge probability is:
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Model

∏
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vu MMc

cpvuP )1(1),(

Network

Communities, C

Nodes, V

Community Affiliations

pA pB

Memberships, M

If �, � share no communities: � �, � � �
Think of this as an “OR” function: If at least 1 community says “YES” we create an edge

	� … set of communities 

node � belongs to
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Model

Network
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� AGM can express a 

variety of community 

structures:

Non-overlapping, 

Overlapping, Nested
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� Detecting communities with AGM:
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Given a Graph , find the Model

1) Affiliation graph M

2) Number of communities C

3) Parameters pc
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� Maximum Likelihood Principle (MLE):

� Given: Data 

� Assumption: Data is generated by some model ���

� � … model

�  … model parameters

� Want to estimate �� 
 �: 
� The probability that our model � (with parameters �) 

generated the data

� Now let’s find the most likely model that could have 

generated the data: arg	max
�

	�� 
 �
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� Imagine we are given a set of coin flips
� Task: Figure out the bias of a coin!

� Data: Sequence of coin flips: 
 � ��, �, �, �, �, �, �, ��
� Model: �  � return 1 with prob. Θ, else return 0

� What is �� 
  ? Assuming coin flips are independent

� So, �� 
  � �� �  ∗ �� �  ∗ �� �  …∗ �� � 
� What is �� �  ? Simple, �� �  � 

� Then, �� 
  � � � �   

� For example: 

� �� 
  � �.  � �. ���"�#
� �� 
  � �

$ � �. �� �%"
� What did we learn? Our data was most 

likely generated by coin with bias  � �/$
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� How do we do MLE for graphs?

� Model generates a probabilistic adjacency matrix

� We then flip all the entries of the probabilistic 

matrix to obtain the binary adjacency matrix �

� The likelihood of AGM generating  graph G:
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0 0.10 0.10 0.04

0.10 0 0.02 0.06

0.10 0.02 0 0.06

0.04 0.06 0.06 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

For every pair 

of nodes �, �
AGM gives  the 

prob. ��� of 
them being 

linked

Flip 
biased 

coins
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� Given graph G(V,E) and Θ, we calculate 

likelihood that Θ generated G: P(G|Θ)

0 0.9 0.9 0

0.9 0 0.9 0

0.9 0.9 0 0.9

0 0 0.9 0
Θ=B(V, C, M, {pc})

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

G

P(G|Θ)

)),(1(),()|(
),(),(

vuPvuPGP
EvuEvu

−ΠΠ=Θ
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G
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� Our goal: Find  � '�(, ),	, �) � such 

that:

� How do we find '�(, ),	, �) � that 

maximizes the likelihood?
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ΘP( | ) AGM

arg max
Θ



� Our goal is to find ' (, ),	, �) such that:

arg	max
*�(,),	, �) �

+ ���, �� +�� � � �, �
��∉-

�
�,�∈-

� Problem: Finding B means finding the 

bipartite affiliation network.

� There is no nice way to do this.

� Fitting '�(, ),	, �) � is too hard, 

let’s change the model (so it is easier to fit)!
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� Relaxation: Memberships have strengths

� /��: The membership strength of node �
to community � (/�� � �: no membership) 

� Each community � links nodes independently:

�� �, � � � � 123	��/�� ⋅ /���
26

/��
u v
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� Community membership strength matrix /
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/ �
j

Communities

N
o
d
e
s

/�� … 

strength of �’s 

membership to �

/� … vector of 

community 

membership

strengths of �

� �� �, � � � � 123	��/�� ⋅ /���
� Probability of connection is 

proportional to the product of 
strengths

� Notice: If one node doesn’t belong to the 
community (567 � 0) then ���, �� � �

� Prob. that at least one common 
community ) links the nodes:

� � �, � � � �∏ � � �) �, �)



� Community � links nodes �, � independently:

�� �, � � � � 123	��/�� ⋅ /���
� Then prob. at least one common ) links them: 

� �, � � � �∏ � � �) �, �) 										
� � � 123	��∑ /�) ⋅ /�)) �

																		� � � 123	��/� ⋅ /�;�
� Example / matrix:
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/� :
/� :

Then: /� ⋅ /�; � �. �#
And: � �, � � � � <=� ��. �# � �. �>
But: � �,? � �. $$

� �,? � �/? :
Node community 

membership strengths
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0 1.2 0 0.2

0.5 0 0 0.8

0 1.8 1 0



� Task: Given a network @�(, -�, estimate /
� Find / that maximizes the likelihood:

ABC	DA=/ 	 + ���, �
��,��∈-

� + �� � � �, � �
�,� ∉-

� where: ���, �� � � � 123	��/� ⋅ /�;�
� Many times we take the logarithm of the likelihood, 

and call it log-likelihood: E / � FGH	��@|/�
� Goal: Find / that maximizes E�/�:
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� Compute gradient of a single row /� of /:

� Coordinate gradient ascent:

� Iterate over the rows of /:

� Compute gradient JE /� of row � (while keeping others fixed)

� Update the row /�:  /� ← /� L M	NE�/��
� Project /� back to a non-negative vector: If /�) O �: /�) � �

� This is slow! Computing JE /� takes linear time!
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P���.. Set out 
outgoing neighbors 



� However, we notice:

� We cache ∑ /��
� So, computing ∑ /��∉P��� now takes linear time

in the degree |P � | of �
� In networks degree of a node is much smaller to the total 

number of nodes in the network, so this is a significant 

speedup!
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� BigCLAM takes 5 minutes for 300k node nets

� Other methods take 10 days

� Can process networks with 100M edges!
32
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� Extension:

Make community membership edges directed!

� Outgoing membership: Nodes “sends” edges

� Incoming membership: Node “receives” edges
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� Everything is almost the same except now 

we have 2 matrices: / and Q
� /… out-going community memberships

� Q… in-coming community memberships

� Edge prob.: � �, � � � � <=���/�Q�;�
� Network log-likelihood:

which we optimize the same way as before
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� Overlapping Community Detection at Scale: A Nonnegative Matrix 
Factorization Approach by J. Yang, J. Leskovec. ACM International 
Conference on Web Search and Data Mining (WSDM), 2013.

� Detecting Cohesive and 2-mode Communities in Directed and 
Undirected Networks by J. Yang, J. McAuley, J. Leskovec. ACM 
International Conference on Web Search and Data Mining (WSDM), 
2014.

� Community Detection in Networks with Node Attributes by J. Yang, 
J. McAuley, J. Leskovec. IEEE International Conference On Data 
Mining (ICDM), 2013.
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