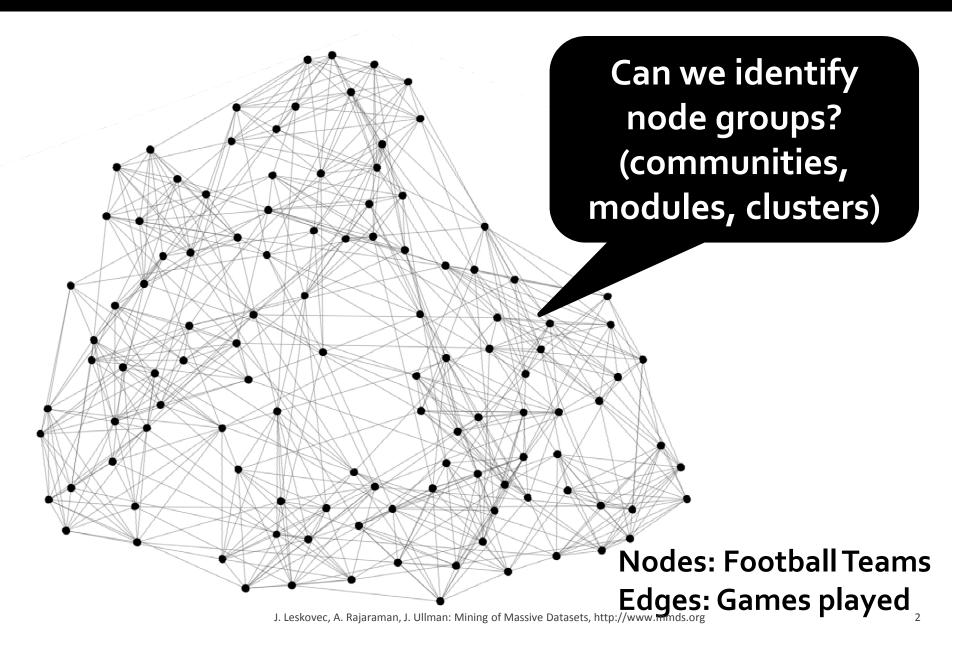
Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://www.mmds.org</u>

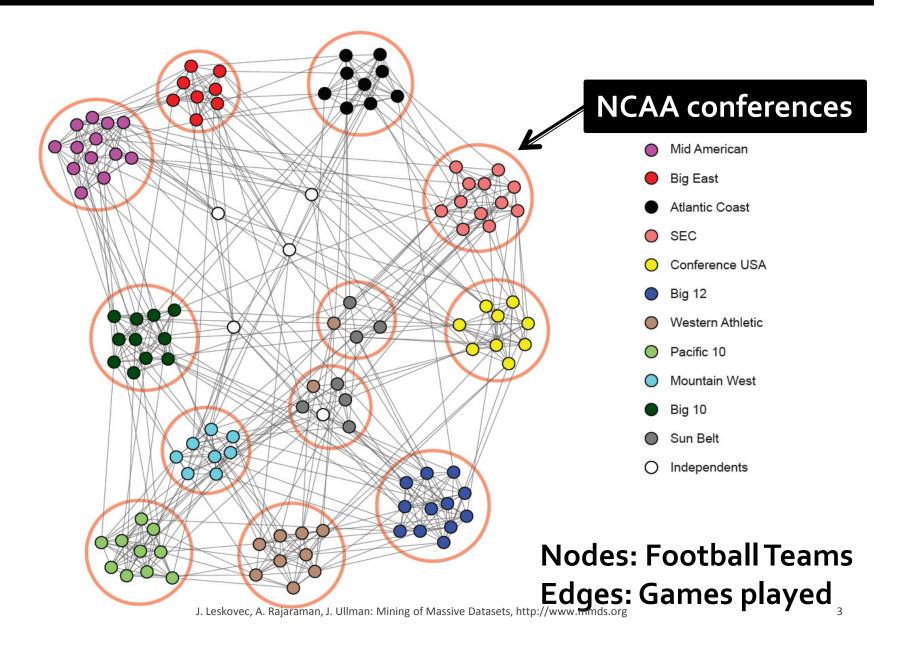
Analysis of Large Graphs: Overlapping Communities

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org

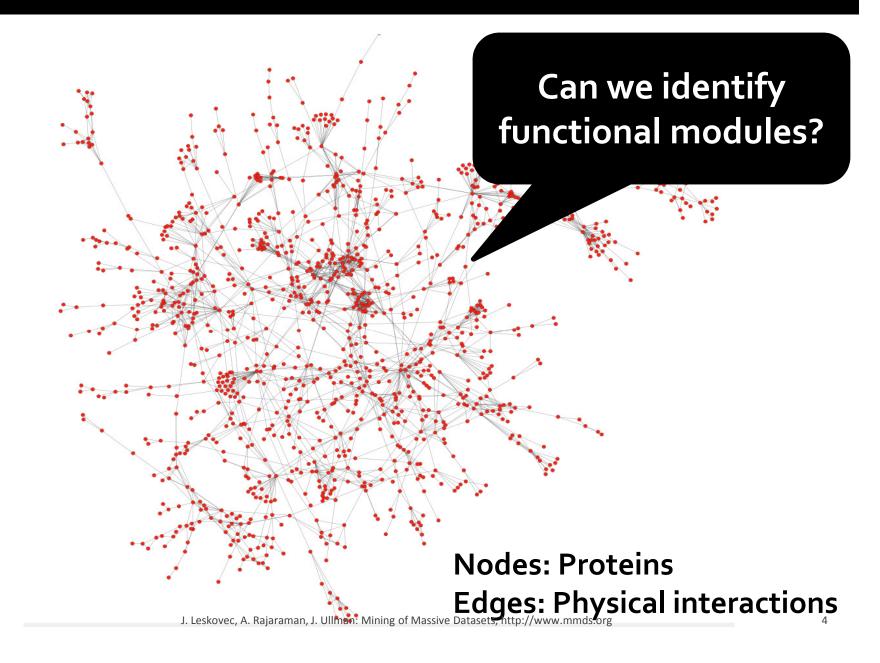
Identifying Communities



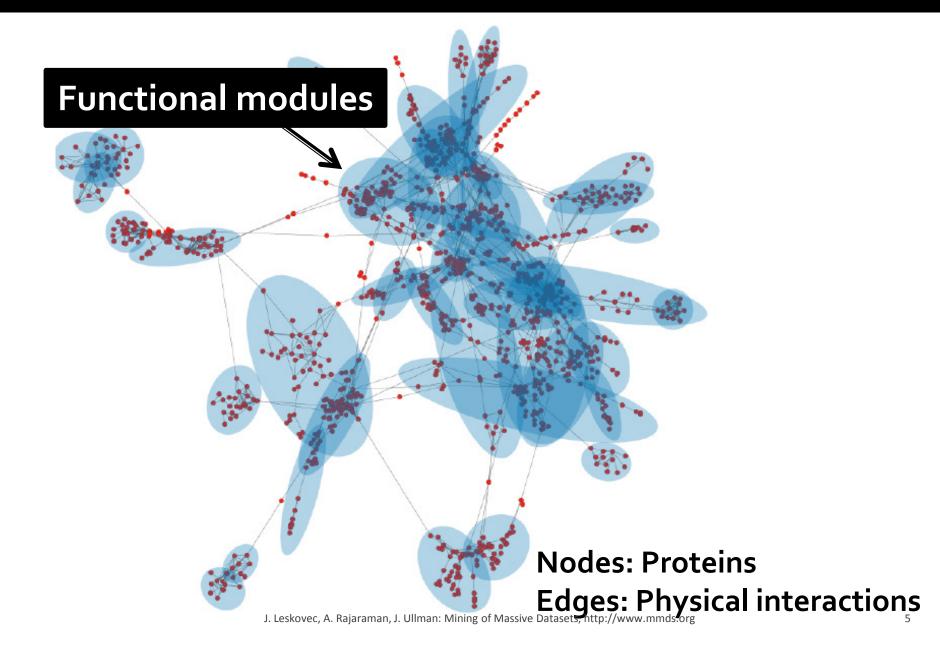
NCAA Football Network



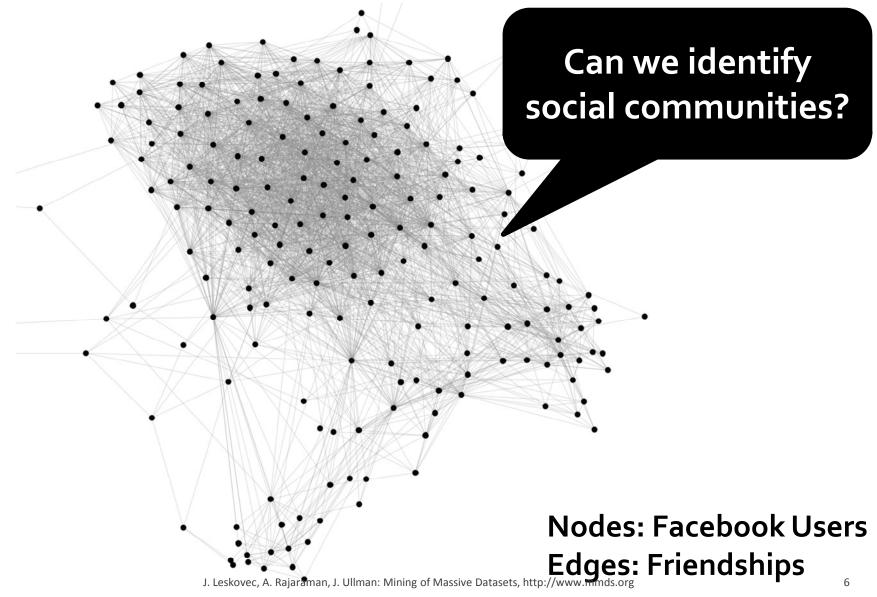
Protein-Protein Interactions



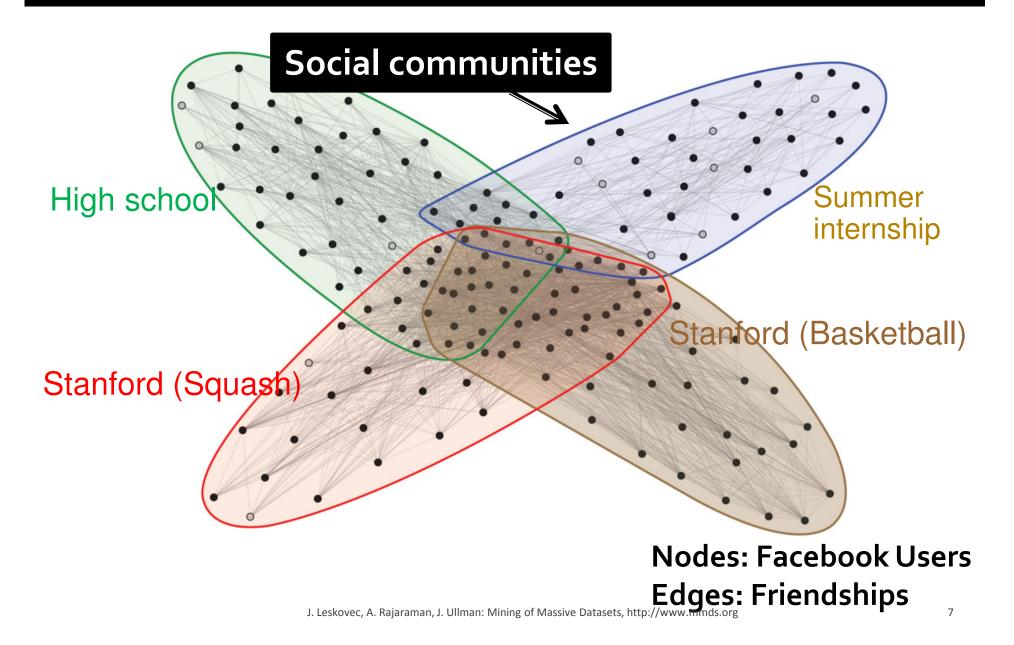
Protein-Protein Interactions



Facebook Network

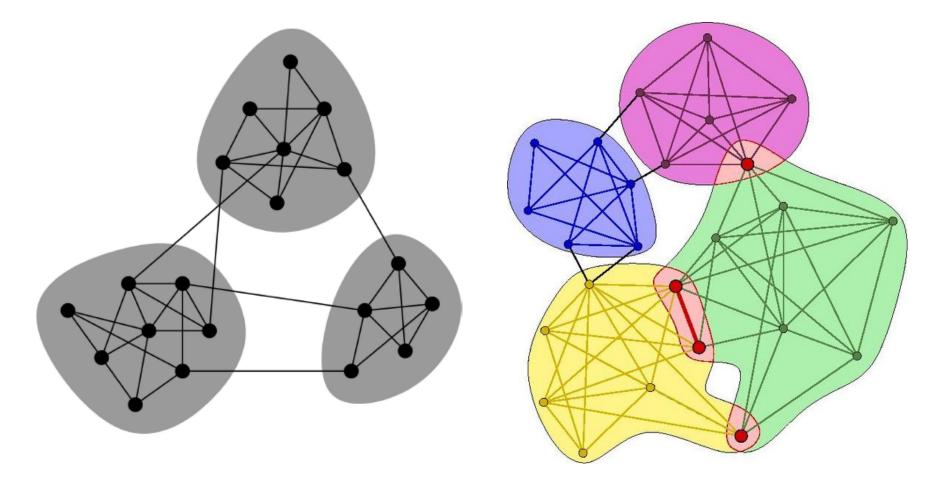


Facebook Network

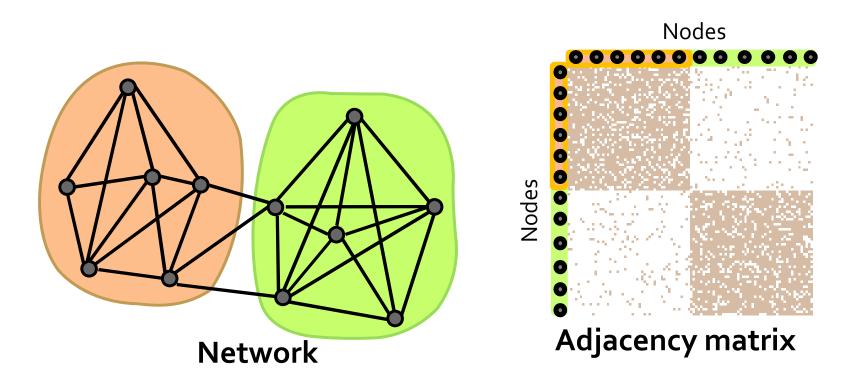


Overlapping Communities

Non-overlapping vs. overlapping communities

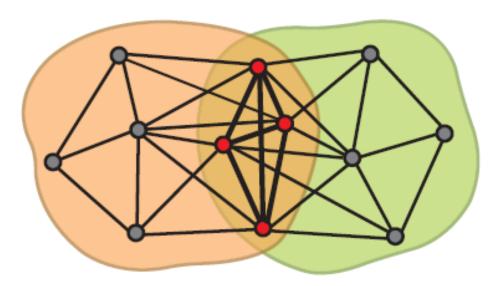


Non-overlapping Communities



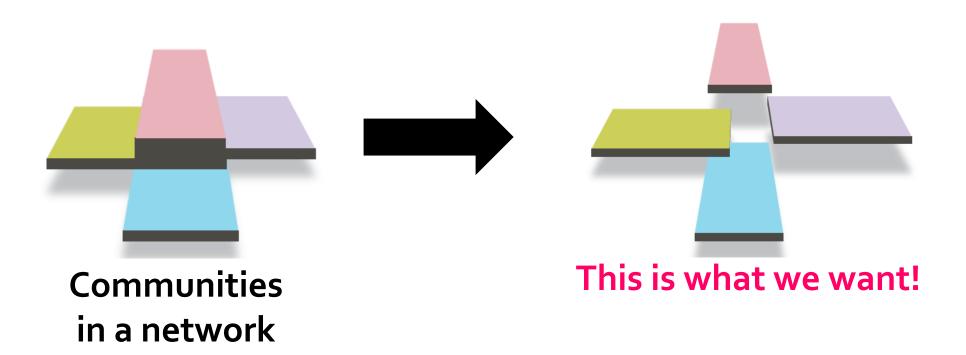
Communities as Tiles!

What is the structure of community overlaps: Edge density in the overlaps is higher!



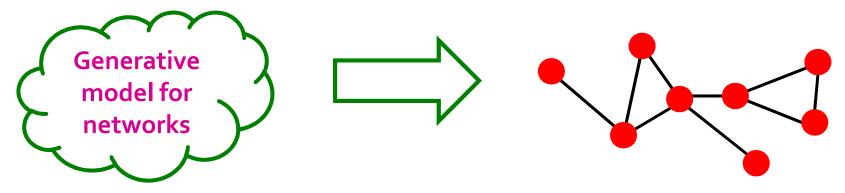
Communities as "tiles"

Recap so far...

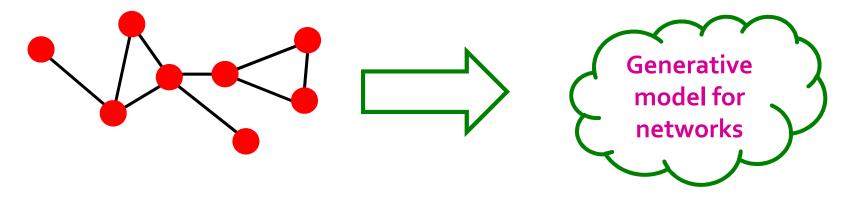


Plan of attack

I) Given a model, we generate the network:



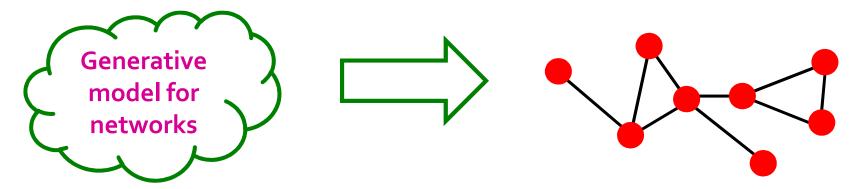
Given a network, find the "best" model



Model of networks

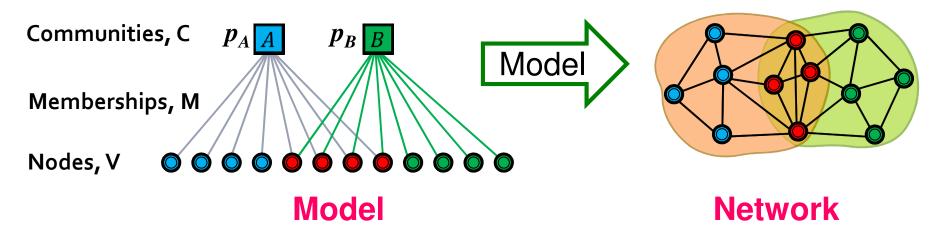
Goal: Define a model that can generate networks

The model will have a set of "parameters" that we will later want to estimate (and detect communities)



Q: Given a set of nodes, how do communities "generate" edges of the network?

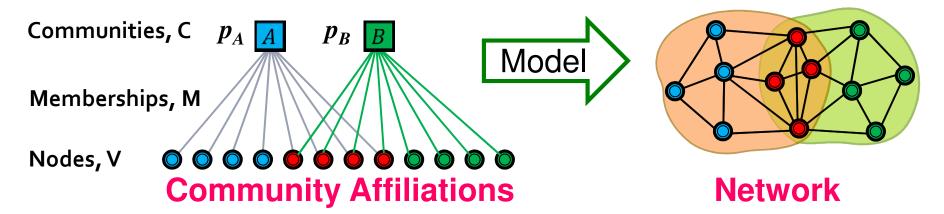
Community-Affiliation Graph



Generative model B(V, C, M, {p_c}) for graphs:

- Nodes V, Communities C, Memberships M
- Each community c has a single probability p_c
- Later we fit the model to networks to detect communities

AGM: Generative Process



AGM generates the links: For each

- For each pair of nodes in community A, we connect them with prob. p_A
- The overall edge probability is:

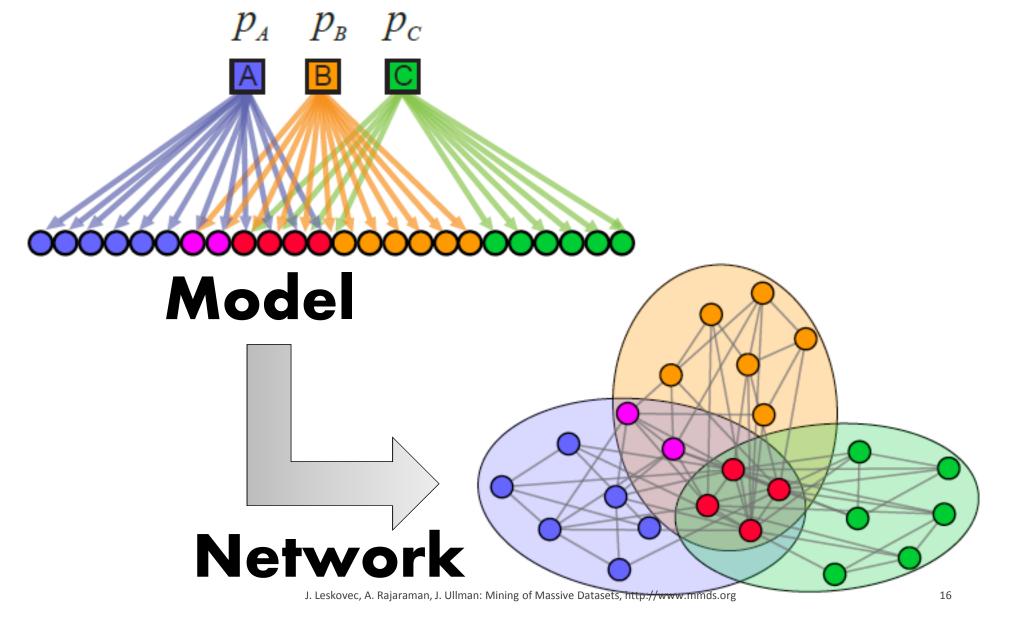
$$P(u,v) = 1 - \prod_{c \in M_u \cap M_v} (1 - p_c)$$

If $\boldsymbol{u}, \boldsymbol{v}$ share no communities: $\boldsymbol{P}(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{\varepsilon}$

 M_u ... set of communities node u belongs to

Think of this as an "OR" function: If at least 1 community says "YES" we create an edge

Recap: AGM networks

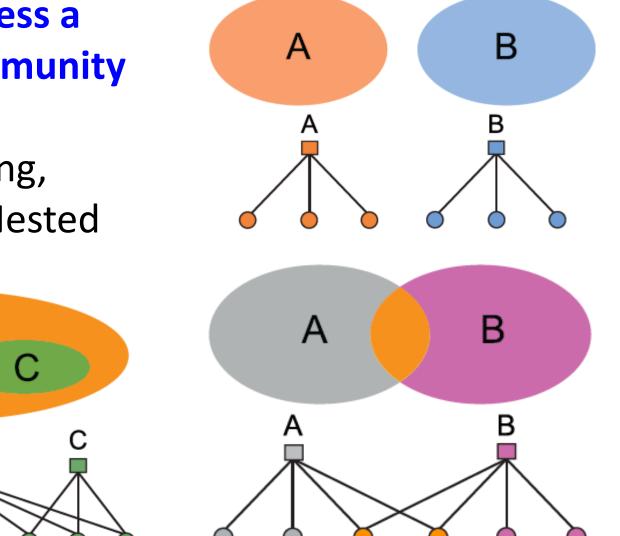


AGM: Flexibility

 AGM can express a variety of community structures: Non-overlapping, Overlapping, Nested

B

в

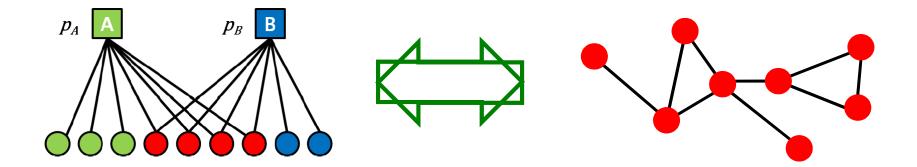


J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How do we detect communities with AGM?

Detecting Communities

Detecting communities with AGM:



Given a Graph G(V, E), find the Model

Affiliation graph *M* Number of communities C
Parameters *p_c*

Maximum Likelihood Estimation

Maximum Likelihood Principle (MLE):

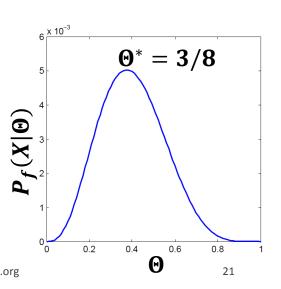
- Given: Data X
- Assumption: Data is generated by some model $f(\Theta)$
 - *f* ... model
 - Θ ... model parameters
- Want to estimate $P_f(X|\Theta)$:
 - The probability that our model *f* (with parameters *O*) generated the data
- Now let's find the most likely model that could have generated the data: arg max P_f(X|O)

Example: MLE

- Imagine we are given a set of coin flips
- Task: Figure out the bias of a coin!
 - Data: Sequence of coin flips: X = [1, 0, 0, 0, 1, 0, 0, 1]
 - Model: $f(\Theta)$ = return 1 with prob. Θ , else return 0
 - What is $P_f(X|\Theta)$? Assuming coin flips are independent
 - So, $P_f(X|\Theta) = P_f(1|\Theta) * P_f(0|\Theta) * P_f(0|\Theta) ... * P_f(1|\Theta)$
 - What is $P_f(1|\Theta)$? Simple, $P_f(1|\Theta) = \Theta$
 - Then, $P_f(X|\Theta) = \Theta^3(1-\Theta)^5$
 - For example:
 - $P_f(X|\Theta = 0.5) = 0.003906$

•
$$P_f(X|\Theta = \frac{3}{8}) = 0.005029$$

What did we learn? Our data was most likely generated by coin with bias \overline{O} = 3/8 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



MLE for Graphs

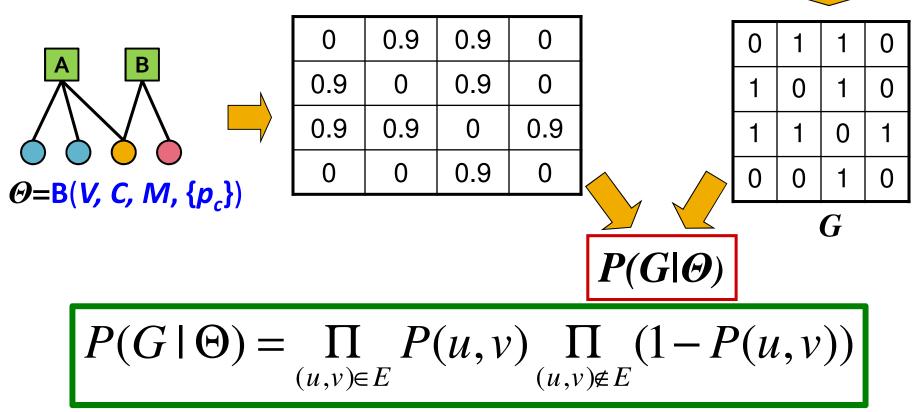
How do we do MLE for graphs?

- Model generates a probabilistic adjacency matrix
- We then flip all the entries of the probabilistic matrix to obtain the binary adjacency matrix A

• The likelihood of AGM generating graph G: $P(G \mid \Theta) = \prod_{(u,v)\in E} P(u,v) \prod_{(u,v)\notin E} (1 - P(u,v))$

Graphs: Likelihood $P(G|\Theta)$

Given graph G(V,E) and Ø, we calculate
likelihood that Ø generated G: P(G|Ø)

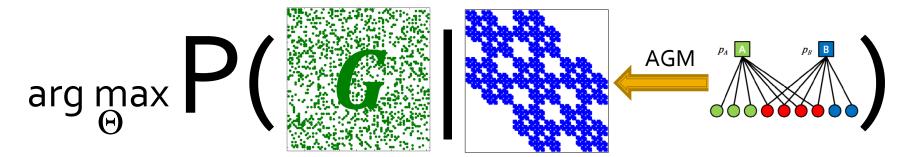


J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

G

MLE for Graphs

• Our goal: Find $\Theta = B(V, C, M, \{p_C\})$ such that:

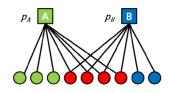


How do we find B(V, C, M, {p_c}) that maximizes the likelihood?

MLE for AGM

• Our goal is to find $B(V, C, M, \{p_C\})$ such that: $\arg \max_{B(V,C,M,\{p_C\})} \prod_{u,v \in E} P(u,v) \prod_{uv \notin E} (1 - P(u,v))$

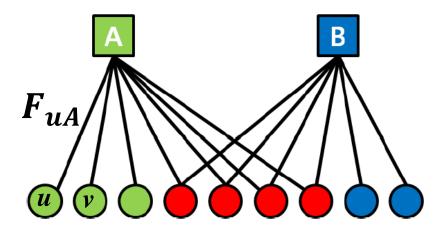
Problem: Finding B means finding the bipartite affiliation network.



- There is no nice way to do this.
- Fitting B(V, C, M, {p_C}) is too hard, let's change the model (so it is easier to fit)!

From AGM to BigCLAM

Relaxation: Memberships have strengths

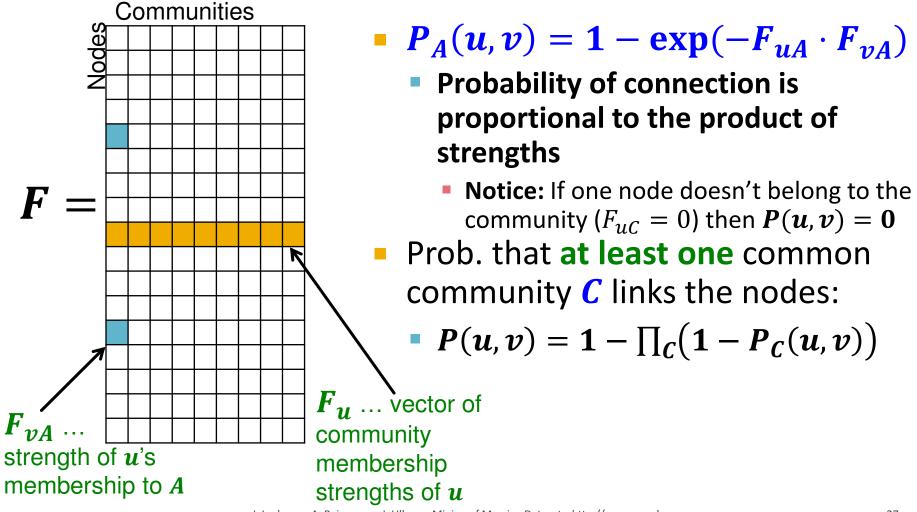


- F_{uA} : The membership strength of node uto community A ($F_{uA} = 0$: no membership)
- Each community A links nodes independently:

 $\boldsymbol{P}_A(\boldsymbol{u},\boldsymbol{v}) = \mathbf{1} - \exp(-\boldsymbol{F}_{\boldsymbol{u}A} \cdot \boldsymbol{F}_{\boldsymbol{v}A})$

Factor Matrix F

Community membership strength matrix F



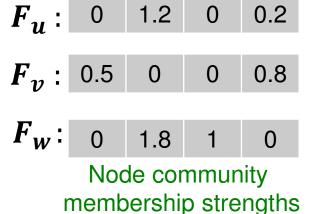
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

From AGM to BigCLAM

Community A links nodes u, v independently:

 $P_{A}(u, v) = 1 - \exp(-F_{uA} \cdot F_{vA})$ Then prob. at least one common *C* links them: $P(u, v) = 1 - \prod_{C} (1 - P_{C}(u, v))$ $= 1 - \exp(-\sum_{C} F_{uC} \cdot F_{vC})$ $= 1 - \exp(-F_{u} \cdot F_{v}^{T})$

Example F matrix:



Then: $F_u \cdot F_v^T = 0.16$ And: P(u, v) = 1 - exp(-0.16) = 0.14But: P(u, w) = 0.88P(v, w) = 0

BigCLAM: How to find F

- Task: Given a network G(V, E), estimate F
 - Find F that maximizes the likelihood:

$$arg max_F \prod_{(u,v)\in E} P(u,v) \prod_{(u,v)\notin E} (1-P(u,v))$$

where:
$$P(u, v) = 1 - \exp(-F_u \cdot F_v^T)$$

• Many times we take the logarithm of the likelihood, and call it log-likelihood: $l(F) = \log P(G|F)$

Goal: Find F that maximizes l(F):

$$l(F) = \sum_{(u,v)\in E} \log(1 - \exp(-F_u F_v^T)) - \sum_{(u,v)\notin E} F_u F_v^T$$

BigCLAM: V1.0

$$l(F_u) = \sum_{v \in \mathcal{N}(u)} \log(1 - \exp(-F_u F_v^T)) - \sum_{v \notin \mathcal{N}(u)} F_u F_v^T$$

Compute gradient of a single row F_u of F:

$$\nabla l(F_u) = \sum_{v \in \mathcal{N}(u)} F_v \frac{\exp(-F_u F_v^T)}{1 - \exp(-F_u F_v^T)} - \sum_{v \notin \mathcal{N}(u)} F_v$$

Coordinate gradient ascent:

 $\mathcal{N}(u)$.. Set out outgoing neighbors

- Iterate over the rows of F:
 - Compute gradient $\nabla l(F_u)$ of row u (while keeping others fixed)
 - Update the row F_u : $F_u \leftarrow F_u + \eta \nabla l(F_u)$
 - Project F_u back to a non-negative vector: If $F_{uC} < 0$: $F_{uC} = 0$

• This is slow! Computing $\nabla l(F_u)$ takes linear time! J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

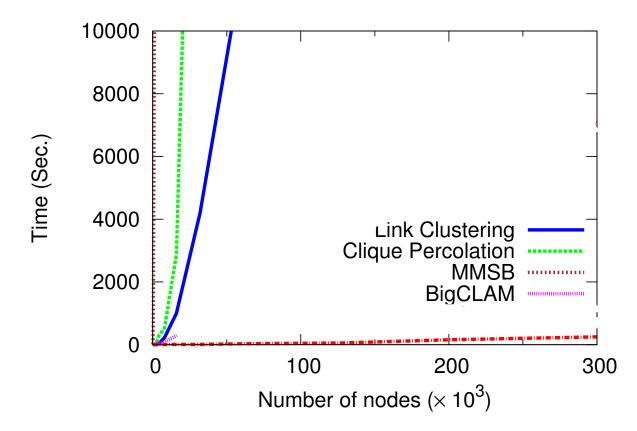
BigCLAM: V2.0

However, we notice:

$$\sum_{v \notin \mathcal{N}(u)} F_v = \left(\sum_v F_v - F_u - \sum_{v \in \mathcal{N}(u)} F_v\right)$$

- We cache $\sum_{v} F_{v}$
- So, computing $\sum_{v \notin \mathcal{N}(u)} F_v$ now takes linear time in the degree $|\mathcal{N}(u)|$ of u
 - In networks degree of a node is much smaller to the total number of nodes in the network, so this is a significant speedup!

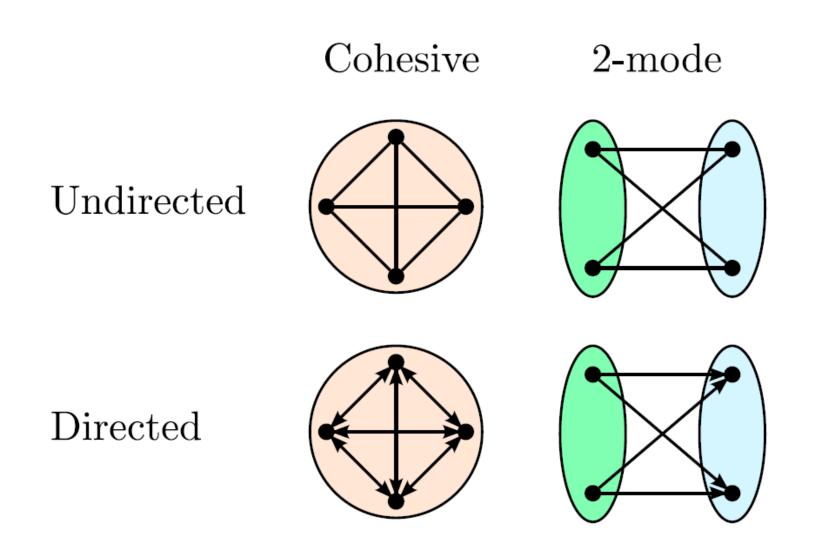
BigClam: Scalability



- BigCLAM takes 5 minutes for 300k node nets
 - Other methods take 10 days
- Can process networks with 100M edges!

Extension: Directed memberships

Extension: Beyond Clusters

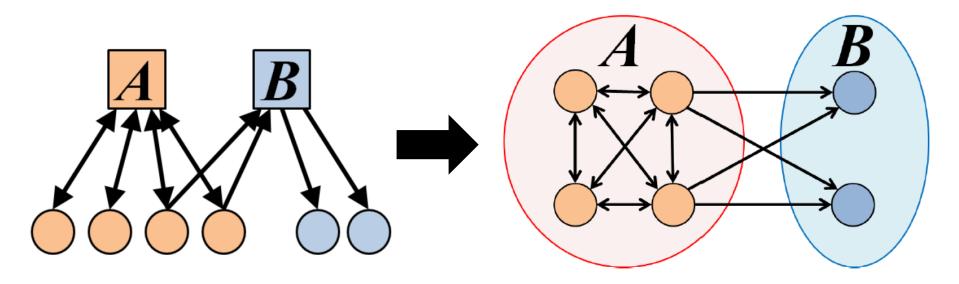


Extension: Directed AGM

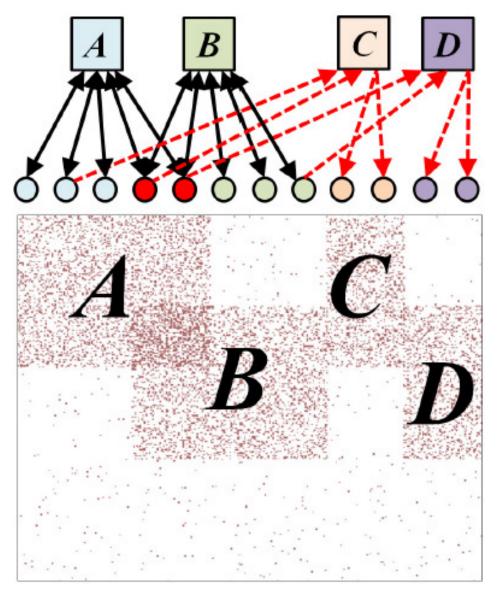
Extension:

Make community membership edges directed!

- Outgoing membership: Nodes "sends" edges
- Incoming membership: Node "receives" edges



Example: Model and Network

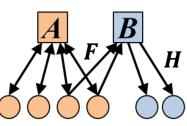


J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Directed AGM

Everything is almost the same except now we have 2 matrices: F and H

- F... out-going community memberships
- H... in-coming community memberships

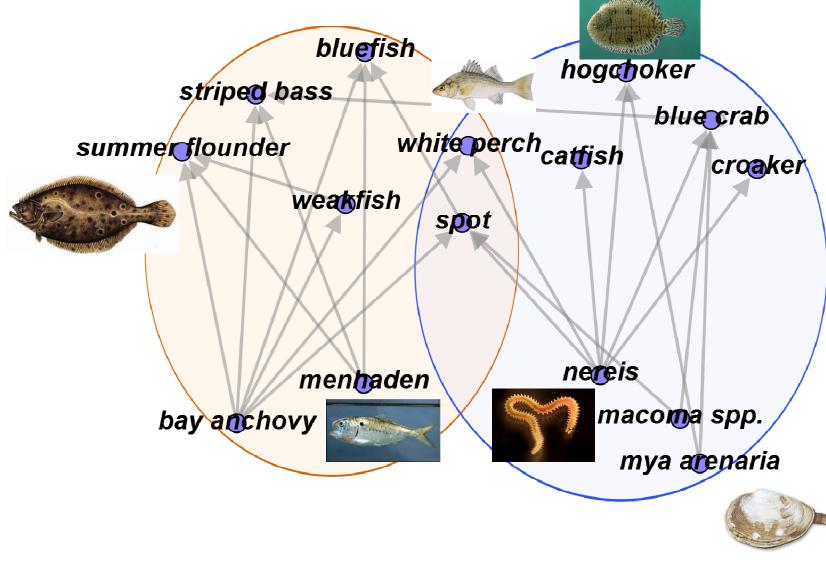


- Edge prob.: $P(u, v) = 1 exp(-F_uH_v^T)$
- Network log-likelihood:

$$l(F,H) = \sum_{(u,v)\in E} \log(1 - \exp(-F_u H_v^T)) - \sum_{(u,v)\notin E} F_u H_v^T$$

which we optimize the same way as before

Predator-prey Communities



More details at...

- Overlapping Community Detection at Scale: A Nonnegative Matrix <u>Factorization Approach</u> by J. Yang, J. Leskovec. ACM International Conference on Web Search and Data Mining (WSDM), 2013.
- <u>Detecting Cohesive and 2-mode Communities in Directed and</u> <u>Undirected Networks</u> by J. Yang, J. McAuley, J. Leskovec. ACM *International Conference on Web Search and Data Mining (WSDM)*, 2014.
- <u>Community Detection in Networks with Node Attributes</u> by J. Yang, J. McAuley, J. Leskovec. *IEEE International Conference On Data Mining (ICDM)*, 2013.