New Topic: Machine Learning!

- High dim. data
 - Locality sensitive hashing
 - Clustering
 - Dimensionality reduction

- Graph data
 - PageRank, SimRank
 - Community Detection
 - Spam Detection

- Infinite data
 - Filtering data streams
 - Web advertising
 - Queries on streams

- Machine learning
 - SVM
 - Decision Trees
 - Perceptron, kNN

- Apps
 - Recommender systems
 - Association Rules
 - Duplicate document detection
Would like to do prediction: estimate a function $f(x)$ so that $y = f(x)$

Where y can be:
- **Real number**: Regression
- **Categorical**: Classification
- Complex object:
 - Ranking of items, Parse tree, etc.

Data is labeled:
- Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class ($\{+1, -1\}$, or a real number)

Estimate $y = f(x)$ on X,Y. Hope that the same $f(x)$ also works on unseen X', Y'
We will talk about the following methods:

- k-Nearest Neighbor (Instance based learning)
- Perceptron and Winnow algorithms
- Support Vector Machines
- Decision trees

Main question:

How to efficiently train
(build a model/find model parameters)?
Instance Based Learning

- **Instance based learning**
- **Example: Nearest neighbor**
 - Keep the whole training dataset: \{ (x, y) \}
 - A query example (vector) \(q \) comes
 - Find closest example(s) \(x^* \)
 - Predict \(y^* \)
- **Works both for regression and classification**
 - Collaborative filtering is an example of k-NN classifier
 - Find \(k \) most similar people to user \(x \) that have rated movie \(y \)
 - Predict rating \(y_x \) of \(x \) as an average of \(y_k \)
To make Nearest Neighbor work we need 4 things:

- **Distance metric:**
 - Euclidean

- **How many neighbors to look at?**
 - One

- **Weighting function (optional):**
 - Unused

- **How to fit with the local points?**
 - Just predict the same output as the nearest neighbor
k-Nearest Neighbor

- **Distance metric:**
 - Euclidean

- **How many neighbors to look at?**
 - k

- **Weighting function (optional):**
 - Unused

- **How to fit with the local points?**
 - Just predict the average output among k nearest neighbors

$k=9$
Kernel Regression

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - All of them (!)
- Weighting function:
 - \(w_i = \exp\left(-\frac{d(x_i, q)^2}{K_w}\right) \)
 - Nearby points to query \(q \) are weighted more strongly. \(K_w \) is kernel width.
- How to fit with the local points?
 - Predict weighted average: \(\frac{\sum_i w_i y_i}{\sum_i w_i} \)
How to find nearest neighbors?

- **Given:** a set P of n points in \mathbb{R}^d
- **Goal:** Given a query point q
 - **NN:** Find the nearest neighbor p of q in P
 - **Range search:** Find one/all points in P within distance r from q
Algorithms for NN

- **Main memory:**
 - Linear scan
 - **Tree based:**
 - Quadtree
 - kd-tree
 - **Hashing:**
 - Locality-Sensitive Hashing

- **Secondary storage:**
 - R-trees
(1958)
F. Rosenblatt

The perceptron: a probabilistic model for information storage and organization in the brain
Psychological Review 65: 386–408

Perceptron
Example: **Spam filtering**

<table>
<thead>
<tr>
<th>viagra</th>
<th>learning</th>
<th>the</th>
<th>dating</th>
<th>nigeria</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vec{x}_1 = (1, 0, 1, 0, 0))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(y_1 = 1)</td>
</tr>
<tr>
<td>(\vec{x}_2 = (0, 1, 1, 0, 0))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(y_2 = -1)</td>
</tr>
<tr>
<td>(\vec{x}_3 = (0, 0, 0, 0, 1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(y_3 = 1)</td>
</tr>
</tbody>
</table>

Instance space \(x \in X \) (\(|X| = n \) data points)
- Binary or real-valued feature vector \(x \) of word occurrences
- \(d \) features (words + other things, \(d \sim 100,000 \))

Class \(y \in Y \)
- \(y \): Spam (+1), Ham (-1)
Binary classification:

\[
f(x) = \begin{cases}
+1 & \text{if } w_1 x_1 + w_2 x_2 + \ldots + w_d x_d \geq \theta \\
-1 & \text{otherwise}
\end{cases}
\]

Input: Vectors \(x^{(j)}\) and labels \(y^{(j)}\)
- Vectors \(x^{(j)}\) are real valued where \(\|x\|_2 = 1\)

Goal: Find vector \(w = (w_1, w_2, \ldots, w_d)\)
- Each \(w_i\) is a real number

Decision boundary is linear

\[w \cdot x = 0\]

\[w \cdot x = \theta\]

Note:
- \(x \Leftrightarrow \langle x, 1 \rangle \quad \forall x\)
- \(w \Leftrightarrow \langle w, -\theta \rangle\)
Perceptron [Rosenblatt ‘58]

- (very) Loose motivation: Neuron
- Inputs are feature values
- Each feature has a weight w_i
- Activation is the sum:
 - $f(x) = \sum_i w_i x_i = w \cdot x$

- If the $f(x)$ is:
 - Positive: Predict +1
 - Negative: Predict -1
Perceptron: Estimating \(w \)

- **Perceptron:** \(y' = \text{sign}(w \cdot x) \)
- **How to find parameters \(w \)?**
 - Start with \(w_0 = 0 \)
 - Pick training examples \(x^{(t)} \) **one by one (from disk)**
 - Predict class of \(x^{(t)} \) using current weights
 - \(y' = \text{sign}(w^{(t)} \cdot x^{(t)}) \)
 - **If \(y' \) is correct (i.e., \(y_t = y' \))**
 - No change: \(w^{(t+1)} = w^{(t)} \)
 - **If \(y' \) is wrong:** adjust \(w^{(t)} \)
 \[
 w^{(t+1)} = w^{(t)} + \eta \cdot y^{(t)} \cdot x^{(t)}
 \]
 - \(\eta \) is the learning rate parameter
 - \(x^{(t)} \) is the \(t \)-th training example
 - \(y^{(t)} \) is true \(t \)-th class label \(\{+1, -1\} \)

Note that the Perceptron is a conservative algorithm: it ignores samples that it classifies correctly.
Perceptron Convergence

- **Perceptron Convergence Theorem:**
 - If there exist a set of weights that are consistent (i.e., the data is linearly separable) the Perceptron learning algorithm will converge

- **How long would it take to converge?**

- **Perceptron Cycling Theorem:**
 - If the training data is not linearly separable the Perceptron learning algorithm will eventually repeat the same set of weights and therefore enter an infinite loop

- **How to provide robustness, more expressivity?**
Properties of Perceptron

- **Separability**: Some parameters get training set perfectly
- **Convergence**: If training set is separable, perceptron will converge
- **(Training) Mistake bound**: Number of mistakes $< \frac{1}{\gamma^2}$
 - where $\gamma = \min_{t,u} |x^{(t)}u|$ and $\|u\|_2 = 1$
 - Note we assume x Euclidean length 1, then γ is the minimum distance of any example to plane u
Perceptron will oscillate and won’t converge

When to stop learning?

(1) Slowly decrease the learning rate η
 - A classic way is to: $\eta = c_1/(t + c_2)$
 - But, we also need to determine constants c_1 and c_2

(2) Stop when the training error stops chaining

(3) Have a small test dataset and stop when the test set error stops decreasing

(4) Stop when we reached some maximum number of passes over the data
Multiclass Perceptron

- What if more than 2 classes?
 - Weight vector w_c for each class c
 - Train one class vs. the rest:
 - **Example**: 3-way classification \(y = \{A, B, C\} \)
 - Train 3 classifiers: \(w_A \): A vs. B,C; \(w_B \): B vs. A,C; \(w_C \): C vs. A,B

- **Calculate activation for each class**
 \[
 f(x, c) = \sum_i w_{c,i} x_i = w_c \cdot x
 \]
 - **Highest activation wins**
 \[
 c = \arg \max_c f(x, c)
 \]

Issues with Perceptrons

- **Overfitting:**

- **Regularization:** If the data is not separable weights dance around

- ** Mediocre generalization:**
 - Finds a “barely” separating solution
Winnow: Predict \(f(x) = +1 \) iff \(w \cdot x \geq \theta \)

- Similar to perceptron, just different updates
- Assume \(x \) is a real-valued feature vector, \(\|x\|_2 = 1 \)

- Initialize: \(\theta = \frac{d}{2}, \quad w = \left[\frac{1}{d}, \ldots, \frac{1}{d} \right] \)
- For every training example \(x^{(t)} \)
 - Compute \(y' = f(x^{(t)}) \)
 - If no mistake \((y^{(t)} = y') \): do nothing
 - If mistake then: \(w_i \leftarrow w_i \frac{\exp(\eta y^{(t)} x_i^{(t)})}{Z^{(t)}} \)

- \(w \) ... weights (can never get negative!)

- \(Z^{(t)} = \sum_i w_i \exp \left(\eta y^{(t)} x_i^{(t)} \right) \) is the normalizing const.
Improvement: Winnow Algorithm

- **About the update:** \(w_i \leftarrow w_i \frac{\exp(\eta y^{(t)} x_i^{(t)})}{Z^{(t)}} \)
 - If \(x \) is false negative, increase \(w_i \) (promote)
 - If \(x \) is false positive, decrease \(w_i \) (demote)

- **In other words:** Consider \(x_i^{(t)} \in \{-1, +1\} \)
 - Then \(w_i^{(t+1)} \propto w_i^{(t)} \cdot \begin{cases} e^\eta & \text{if } x_i^{(t)} = y^{(t)} \\ e^{-\eta} & \text{else} \end{cases} \)

- **Notice:** This is a weighted majority algorithm of “experts” \(x_i \) agreeing with \(y \)
Extensions: Winnow

- **Problem:** All w_i can only be >0
- **Solution:**
 - For every feature x_i, introduce a new feature $x_i' = -x_i$
 - Learn Winnow over $2d$ features
- **Example:**
 - Consider: $x = [1, .7, -4], w = [.5, .2, -3]$
 - Then new x and w are $x = [1, .7, -4, -1, -7, .4], w = [.5, .2, 0, 0, 0, .3]$
 - Note this results in the same dot values as if we used original x and w
- New algorithm is called **Balanced Winnow**
In practice we implement Balanced Winnow:

- 2 weight vectors w^+, w^-; effective weight is the difference

- **Classification rule:**
 - $f(x) = +1$ if $(w^+ - w^-) \cdot x \geq \theta$

- **Update rule:**
 - If mistake:
 - $w^+_i \leftarrow w^+_i \frac{\exp(\eta y(t)x^{(t)}_i)}{Z^+(t)}$
 - $w^-_i \leftarrow w^-_i \frac{\exp(-\eta y(t)x^{(t)}_i)}{Z^-(t)}$

$$Z^-(t) = \sum_i w_i \exp(-\eta y^{(t)}x^{(t)}_i)$$
Extensions: Thick Separator

- **Thick Separator** (aka *Perceptron with Margin*)
 (Applies both to Perceptron and Winnow)
 - Set margin parameter γ
 - **Update** if $y=+1$
 but $w \cdot x < \theta + \gamma$
 - or if $y=-1$
 but $w \cdot x > \theta - \gamma$

Note: γ is a functional margin. Its effect could disappear as w grows. Nevertheless, this has been shown to be a very effective algorithmic addition.
Summary of Algorithms

- **Setting:**
 - Examples: \(x \in \{0, 1\} \), weights \(w \in \mathbb{R}^d \)
 - Prediction: \(f(x) = +1 \) iff \(w \cdot x \geq \theta \) else \(-1\)

- **Perceptron:** Additive weight update
 \[
 w \leftarrow w + \eta \ y \ x
 \]
 - If \(y=+1 \) but \(w \cdot x \leq \theta \) then \(w_i \leftarrow w_i + 1 \) (if \(x_i=1 \)) (promote)
 - If \(y=-1 \) but \(w \cdot x > \theta \) then \(w_i \leftarrow w_i - 1 \) (if \(x_i=1 \)) (demote)

- **Winnow:** Multiplicative weight update
 \[
 w \leftarrow w \exp\{\eta \ y \ x\}
 \]
 - If \(y=+1 \) but \(w \cdot x \leq \theta \) then \(w_i \leftarrow 2 \cdot w_i \) (if \(x_i=1 \)) (promote)
 - If \(y=-1 \) but \(w \cdot x > \theta \) then \(w_i \leftarrow w_i / 2 \) (if \(x_i=1 \)) (demote)
How to compare learning algorithms?

Considerations:

- Number of features d is very large
- The instance space is sparse
 - Only few features per training example are non-zero
- The model is sparse
 - Decisions depend on a small subset of features
 - In the “true” model on a few w_i are non-zero
- Want to learn from a number of examples that is small relative to the dimensionality d
Perceptron vs. Winnow

Perceptron
- **Online:** Can adjust to changing target, over time
- **Advantages**
 - Simple
 - Guaranteed to learn a linearly separable problem
 - Advantage with few relevant features per training example
- **Limitations**
 - Only linear separations
 - Only converges for linearly separable data
 - Not really “efficient with many features”

Winnow
- **Online:** Can adjust to changing target, over time
- **Advantages**
 - Simple
 - Guaranteed to learn a linearly separable problem
 - Suitable for problems with many irrelevant attributes
- **Limitations**
 - Only linear separations
 - Only converges for linearly separable data
 - Not really “efficient with many features”
Online Learning

- **New setting: Online Learning**
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data
- **Idea: Do slow updates to the model**
 - Both our methods Perceptron and Winnow make updates if they misclassify an example
 - **So:** First train the classifier on training data. Then for every example from the stream, if we misclassify, update the model (using small learning rate)
Example: Shipping Service

- **Protocol:**
 - User comes and tell us origin and destination
 - We offer to ship the package for some money ($10 - $50)
 - Based on the price we offer, sometimes the user uses our service ($y = 1$), sometimes they don't ($y = -1$)

- **Task:** Build an algorithm to optimize what price we offer to the users

- **Features x capture:**
 - Information about user
 - Origin and destination

- **Problem:** Will user accept the price?
Model whether user will accept our price:
\[y = f(x; w) \]
- **Accept:** \(y = 1 \), **Not accept:** \(y = -1 \)
- Build this model with say Perceptron or Winnow

The website that runs continuously

Online learning algorithm would do something like
- User comes
- She is represented as an \((x, y)\) pair where
 - \(x \): Feature vector including price we offer, origin, destination
 - \(y \): If they chose to use our service or not
- The algorithm updates \(w \) using just the \((x, y)\) pair
- Basically, we update the \(w \) parameters every time we get some new data
We discard this idea of a data “set”
Instead we have a continuous stream of data

Further comments:
- For a major website where you have a massive stream of data then this kind of algorithm is pretty reasonable
- Don’t need to deal with all the training data
- If you had a small number of users you could save their data and then run a normal algorithm on the full dataset
 - Doing multiple passes over the data
Online Algorithms

- An online algorithm can adapt to changing user preferences
- For example, over time users may become more price sensitive
- **The algorithm adapts and learns this**
- So the system is dynamic