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� Example: Spam filtering

� Instance space x ∈∈∈∈ X (|X|= n data points)

� Binary or real-valued feature vector x of 

word occurrences 

� d features (words + other things, d~100,000)

� Class y ∈∈∈∈ Y

� y: Spam (+1), Ham (-1)

� Goal: Estimate a function f(x) so that y = f(x)
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� Would like to do prediction:
estimate a function f(x) so that y = f(x)

� Where y can be:

� Real number: Regression

� Categorical: Classification

� Complex object:

� Ranking of items, Parse tree, etc.

� Data is labeled:

� Have many pairs {(x, y)}

� x … vector of binary, categorical, real valued features 

� y … class ({+1, -1}, or a real number)
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� Task: Given data (X,Y) build a model f() to 
predict Y’ based on X’

� Strategy: Estimate �	 � 	� �
on ��, 	
. 
Hope that the same ���
 also 
works to predict unknown 	’
� The “hope” is called generalization

� Overfitting: If f(x) predicts well Y but is unable to predict Y’ 

� We want to build a model that generalizes
well to unseen data

� But Jure, how can we well on data we have 
never seen before?!?
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� Idea: Pretend we do not know the data/labels
we actually do know

� Build the model f(x) on
the training data
See how well f(x) does on
the test data

� If it does well, then apply it also to X’ 

� Refinement: Cross validation

� Splitting into training/validation set is brutal

� Let’s split our data (X,Y) into 10-folds (buckets)

� Take out 1-fold for validation, train on remaining 9

� Repeat this 10 times, report average performance
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� Binary classification:

� Input: Vectors xj and labels yj

� Vectors xj are real valued where � � � 

� Goal: Find vector  w = (w(1), w(2) ,... , w(d) )

� Each w(i) is a real number 
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� (Very) loose motivation: Neuron

� Inputs are feature values

� Each feature has a weight wi

� Activation is the sum:

� � � � ∑ ���
���
 � � ⋅ ���

� If the f(x) is:

� Positive: Predict +1

� Negative: Predict -1
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� Perceptron: y’ = sign(w⋅⋅⋅⋅ x)
� How to find parameters w?

� Start with w0 = 0

� Pick training examples xt one by one

� Predict class of xt using current wt

� y’ = sign(wt⋅⋅⋅⋅ xt)

� If y’ is correct (i.e., yt = y’)

� No change: wt+1 = wt

� If y’ is wrong: Adjust wt

wt+1 = wt + ηηηη ⋅ yt ⋅ xt

� ηηηη is the learning rate parameter

� xt is the t-th training example

� yt is true t-th class label ({+1, -1})
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Note that the Perceptron is 

a conservative algorithm: it 

ignores samples that it 

classifies correctly.



� Good: Perceptron convergence theorem:

� If there exist a set of weights that are consistent 

(i.e., the data is linearly separable) the Perceptron 

learning algorithm will converge

� Bad: Never converges: 

If the data is not separable

weights dance around

indefinitely

� Bad: Mediocre generalization:

� Finds a “barely” separating solution
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� Perceptron will oscillate and won’t converge

� So, when to stop learning?

� (1) Slowly decrease the learning rate ηηηη
� A classic way is to: ηηηη = c1/(t + c2)

� But, we also need to determine constants c1 and c2

� (2) Stop when the training error stops chaining

� (3) Have a small test dataset and stop when the 

test set error stops decreasing

� (4) Stop when we reached some maximum 

number of passes over the data
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� Want to separate “+” from “-” using a line
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Data:
� Training examples: 

� (x1, y1) … (xn, yn)

� Each example i:

� xi = ( xi
(1),… , xi

(d) )

� xi
(j) is real valued

� yi ∈∈∈∈ { -1, +1 }

� Inner product:

� ⋅ � � ∑ ���
 ⋅ ���
����
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+
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+

+ + -
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-

Which is best linear separator (defined by w)?
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C
� Distance from the 

separating 

hyperplane

corresponds to 

the “confidence”

of prediction

� Example:

� We are more sure 

about the class of 

A and B than of C
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� Margin �: Distance of closest example from 

the decision line/hyperplane
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The reason we define margin this way is due to theoretical convenience and existence of 

generalization error bounds that depend on the value of margin.



� Remember: Dot product

� ⋅ � � � ⋅ � ⋅ ��� �
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� Dot product
� ⋅ � � � � ��� �

� What is � ⋅ �
 , � ⋅ ��?

� So, � roughly corresponds to the margin

� Bigger � bigger the separation
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Distance from a point to a line

A (xA
(1), xA

(2))

M (x1, x2)

H

d(A, L) = |AH|

= |(A-M) · w|

= |(xA
(1) – xM

(1)) w(1) + (xA
(2) – xM

(2)) w(2)|

= xA
(1) w(1) + xA

(2) w(2) + b

= w · A + b

Remember xM
(1)w(1) + xM

(2)w(2) = - b
since M belongs to line L

w
L

+

� Let:

� Line L: w∙x+b = 
w(1)x(1)+w(2)x(2)+b=0

� w = (w(1), w(2)) 

� Point A = (xA
(1), xA

(2))

� Point M on a line = (xM
(1), xM

(2))

(0,0)
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Note we assume 

� � � 




� Prediction = sign(w⋅⋅⋅⋅x + b)

� “Confidence” = (w⋅⋅⋅⋅ x + b) y

� For i-th datapoint:

�� 	 �	 �⋅	�� ' ( ��
� Want to solve:

)*+� ),-� ��
� Can rewrite as
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� Maximize the margin:

� Good according to intuition, 

theory (VC dimension) & 

practice

� � is margin … distance from 

the separating hyperplane
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� Separating hyperplane

is defined by the 

support vectors

� Points on +/- planes 

from the solution 

� If you knew these 

points, you could 

ignore the rest

� Generally, 

d+1 support vectors (for d dim. data)
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� Problem:

� Let �⋅� ' ( � � �
then ��⋅� ' �( � � ��
� Scaling w increases margin!

� Solution:

� Work with normalized w:

� � �
� ⋅� ' ( �

� Let’s also require support vectors �"
to be on the plane defined by: � ⋅
�" ' ( � .
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� Want to maximize margin �!
� What is the relation 

between x1 and x2?

� �
 � �� ' �� �
||�||

� We also know:

� � ⋅ �
 ' ( � '

� � ⋅ �� ' ( � 1


� So: 

� � ⋅ �
 ' ( � '

� � �� ' �� �

||�|| ' ( � '

� � ⋅ �� ' ( ' �� �⋅�

� � '
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But w can be arbitrarily large!
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� If data is not separable introduce penalty:

� Minimize ǁwǁ2 plus the 

number of training mistakes

� Set C using cross validation

� How to penalize mistakes?

� All mistakes are not

equally bad!
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� Introduce slack variables ξξξξi

� If point xi is on the wrong 

side of the margin then 

get penalty ξξξξi

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 27

iii

n

i

i
bw

bxwyits

Cw
i

ξ

ξ
ξ

−≥+⋅∀

⋅+ ∑
=

≥

1)(,..

  min
1

2

2
1

0,,

+
+

+

+

+

+
+ -

-

--
-

For each data point:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty

+

ξξξξj

- ξξξξi



� What is the role of slack penalty C:

� C=∞∞∞∞: Only want to w, b

that separate the data

� C=0: Can set ξξξξi to anything, 

then w=0 (basically 

ignores the data)
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� SVM in the “natural” form

� SVM uses “Hinge Loss”:
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� Want to estimate � and (!

� Standard way: Use a solver!

� Solver: software for finding solutions to 
“common” optimization problems

� Use a quadratic solver:

� Minimize quadratic function

� Subject to linear constraints

� Problem: Solvers are inefficient for big data!
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� Want to estimate w, b!

� Alternative approach:

� Want to minimize f(w,b):

� Side note:

� How to minimize convex functions 2�3
?

� Use gradient descent: minz g(z)

� Iterate: zt+1 ←←←← zt – ηηηη ∇∇∇∇g(zt)
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� Want to minimize f(w,b):

� Compute the gradient ∇∇∇∇(j) w.r.t. w(j)
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Iterate until convergence:

• For j = 1 … d

• Evaluate:

• Update:

w(j) ←←←← w(j) - η∇η∇η∇η∇f(j)

� Gradient descent:

� Problem:

� Computing ∇∇∇∇f(j) takes O(n) time!

� n … size of the training dataset
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� Stochastic Gradient Descent

� Instead of evaluating gradient over all examples 

evaluate it for each individual training example

� Stochastic gradient descent:
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We just had:

Iterate until convergence:

• For i = 1 … n

• For j = 1 … d

• Compute: ∇∇∇∇f(j)(xi)

• Update: w(j) ←←←← w(j) - ηηηη ∇∇∇∇f(j)(xi)

Notice: no summation

over i anymore





� Example by Leon Bottou:

� Reuters RCV1 document corpus

� Predict a category of a document

� One vs. the rest classification

� n = 781,000 training examples (documents)

� 23,000 test examples

� d = 50,000 features

� One feature per word

� Remove stop-words

� Remove low frequency words
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� Questions:

� (1) Is SGD successful at minimizing f(w,b)?

� (2) How quickly does SGD find the min of f(w,b)?

� (3) What is the error on a test set?
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Training time         Value of f(w,b)        Test error 

Standard SVM

“Fast SVM”

SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)

(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable
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Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional

SVM

SGD SVM

For optimizing f(w,b) within reasonable quality

SGD-SVM is super fast



� SGD on full dataset vs. Conjugate Gradient on 

a sample of n training examples
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Bottom line: Doing a simple (but fast) SGD update 
many times is better than doing a complicated (but 
slow) CG update a few times

Theory says: Gradient 

descent converges in 

linear time 5. Conjugate 

gradient converges in 5.

5… condition number



� Need to choose learning rate ηηηη and t0

� Leon suggests:

� Choose t0 so that the expected initial updates are 
comparable with the expected size of the weights

� Choose ηηηη:

� Select a small subsample

� Try various rates ηηηη (e.g., 10, 1, 0.1, 0.01, …)

� Pick the one that most reduces the cost

� Use ηηηη for next 100k iterations on the full dataset
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� Sparse Linear SVM:

� Feature vector xi is sparse (contains many zeros)

� Do not do: xi = [0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,…]

� But represent xi as a sparse vector xi=[(4,1), (9,5), …]

� Can we do the SGD update more efficiently?

� Approximated in 2 steps:

cheap: xi is sparse and so few 

coordinates j of w will be updated

expensive: w is not sparse, all 

coordinates need to be updated
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� Solution 1: � � % ⋅ 6
� Represent vector w as the 

product of scalar s and vector v

� Then the update procedure is:

� (1) 6	 � 	6	 1 78 94 ��,��
9�

� (2) % � %�
 1 7

� Solution 2:

� Perform only step (1) for each training example

� Perform step (2) with lower frequency 

and higher ηηηη
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� Stopping criteria: 

How many iterations of SGD?

� Early stopping with cross validation

� Create a validation set

� Monitor cost function on the validation set

� Stop when loss stops decreasing

� Early stopping

� Extract two disjoint subsamples A and B of training data

� Train on A, stop by validating on B

� Number of epochs is an estimate of k

� Train for k epochs on the full dataset
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� Idea 1:
One against all
Learn 3 classifiers

� + vs. {o, -}

� - vs. {o, +}

� o vs. {+, -}

Obtain:

w+ b+,  w- b-,  wo bo

� How to classify?
� Return class c

arg maxc wc x + bc
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� Idea 2: Learn 3 sets of weights simoultaneously!

� For each class c estimate wc, bc

� Want the correct class to have highest margin:

wyi xi + byi ≥≥≥≥ 1 + wc xi + bc ∀∀∀∀c ≠≠≠≠ yi , ∀∀∀∀i
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(xi, yi)



� Optimization problem:

� To obtain parameters wc , bc (for each class c) 

we can use similar techniques as for 2 class SVM

� SVM is widely perceived a very powerful 

learning algorithm
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